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1 Notes, Data, and Programs

These notes, data, and programs will help you reproduce the econometric results in our
paper, which appears in the December 2016 issue of the Journal of Economic Dynamics and
Control. The original data series are available in separate Excel files, as downloaded from
the Federal Reserve Bank of Saint Louis’ FRED database. The same data series can be read
directly into MATLAB from the file tvpvardata.dat.

The main program for running the estimations is tvpvarsim.m. All options for estimating
different model variants can be set at the top of that file. Please note that when identification
is achieved by imposing sign restrictions on impulse responses, tvpvarsim.m can take several
days or more to run.

The Gibbs sampling output saved by tvpvarsim.m is used by counterfact.m to run
counterfactual simulations and poststats.m to compute posterior summary statistics; those
programs need to be run in order, after tvpvarsim.m. The programs named tablex.m and
figurey.m, x ∈ {1, 3, 4} and y ∈ {1, 2, . . . , 9} can then be run to generate the statistics
reported in the paper’s tables and figures. The remaining MATLAB .m files are used by
tvpvarsim.m for the Gibbs sampling routine; comments at the top of each file describe its
function in more detail.

We hope you will find these programs useful in your own research; but if you do, please
cite our paper as well as Primiceri (2005), Del Negro and Primiceri (2015a, 2015b), and the
others on which we have built.

2 The Model

The model is from Primiceri (2005), with the MCMC algorithm corrected as described by
Del Negro and Primiceri (2015b). Quarterly data on the inflation rate (measured using the
GDP deflator, the PCE price index, or the CPI) Πt, a gap variable (either the output gap
or the unemployment rate) Gt, and the short-term nominal interest rate (either the three-
month Treasury bill rate or the federal funds rate) Rt run from 1969:1 through 2007:4, with
the sample period extended beyond the 2001:3 cut-off date from the original paper, but
terminating before the most recent zero-interest rate episode.
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These observable series are combined into the 3× 1 vector

yt =
[
Πt Gt Rt

]′
,

which is assumed to follow a second-order vector autoregression with time-varying coefficients
and a time-varying covariance matrix for the innovations. Thus, the model’s reduced form
is

yt = bt +B1,tyt−1 +B2,tyt−2 + ut, (1)

where
bt =

[
bπ,t bg,t br,t

]
is a 3× 1 vector of time-varying constant terms,

Bj,t =

bj,ππ,t bj,πg,t bj,πr,t
bj,gπ,t bj,gg,t bj,gr,t
bj,rπ,t bj,rg,t bj,rr,t

 ,
j = 1, 2, are 3× 3 matrices of time-varying coefficients, and

ut =
[
uπ,t ug,t ur,t

]′
is a 3× 1 vector of heteroskedastic shocks with covariance matrix Ωt.

Without loss of generality, Ωt can be decomposed as

Ωt = A−1
t ΣtΣ

′
t(A
′
t)
−1, (2)

where At is the lower triangular matrix

At =

 1 0 0
αgπ,t 1 0
αrπ,t αrg,t 1

 (3)

and Σt is the diagonal matrix

Σt =

σπ,t 0 0
0 σg,t 0
0 0 σr,t

 . (4)

The reduced form (1) can therefore be represented equivalently as

yt = bt +B1,tyt−1 +B2,tyt−2 + A−1
t Σtεt, (5)

where Eεtε
′
t = I3. Stacking all the coefficients into the 21× 1 vector

Bt = vec

 b′t
B′1,t
B′2,t

 ,

(5) can be rewritten as
yt = X ′tBt + A−1

t Σtεt, (6)
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where
X ′t = I3 ⊗

[
1 Πt−1 Gt−1 Rt−1 Πt−2 Gt−2 Rt−2

]
.

Let
αt =

[
αgπ,t αrπ,t αrg,t

]′
be the vector of non-zero and non-one elements of At and

σt =
[
σπ,t σg,t σr,t

]′
be the vector of diagonal elements of Σt. The dynamics of the time-varying parameters are
specified as

Bt = Bt−1 + ηt, (7)

αt = αt−1 + ζt, (8)

and
log σt = log σt−1 + ηt. (9)

In (6)-(9), all of the innovations are assumed to be jointly normally distributed with

V = E


εt
ηt
ζt
ηt

 [εt ηt ζt ηt
]

=


I3 0 0 0
0 Q 0 0
0 0 S 0
0 0 0 W

 , (10)

where Q is 21× 21, S is 3× 3, and W is 3× 3 and diagonal, so that the standard deviations
in σt evolve as independent geometric random walks. Following Primiceri (2005), it will be
assumed that S is block-diagonal, with one non-zero element in the first column of the first
row and three distinct non-zero elements in the second and third columns of the second and
third rows. Hence, Q has 231 distinct elements, S has 4 distinct elements, and W has three
distinct elements.

In all that follows, let
ωτ =

[
ω′1 . . . ω′τ

]′
denote the history of a generic vector of variables ωt up to a generic time τ . And for a generic
matrix of variables and constant terms Mt, let

M τ =
[
m′1 . . . m′τ

]′
where mt is a column vector constructed from the time varying elements of Mt.

3 Prior Distributions

Following Cogley and Sargent(2005) and Primiceri (2005), classical estimates of the param-
eters obtained by applying a training sample consisting of the first ten years of data to a
constant-parameter version of the model are used to calibrate the prior means and stan-
dard deviations for the time-varying parameters when estimated with the rest of the sample.
Writing the constant-parameter version of the reduced form (1) as

yt = b+B1yt−1 +B2yt−2 + ut,
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Hamilton (1994, Ch.11) and Lutkepohl (2006, Ch.9) show that estimates of the constant
and slope coefficients in b, B1, and B2 can be obtained by applying ordinary least squares
separately to each equation. Stacking these estimated coefficients into the 21× 1 vector

B̂ = vec

 b̂′B̂′1
B̂′2

 ,

and defining
x′t =

[
1 Πt−1 Gt−1 Rt−1 Πt−2 Gt−2 Rt−2

]
,

standard errors can be computed using the formulas from Hamilton’s (1994, Ch.11, pp.298-
299) Proposition 11.1:

Var(B̂) = Ω̂⊗

(
T∑
t=1

xtx
′
t

)−1

,

where

Ω̂ = (1/T )
T∑
t=1

ûtû
′
t

is the estimated covariance matrix for the least squares residuals

ût = yt − b̂− B̂1yt−1 − B̂2yt−2.

It is convenient to assume that the initial states for the coefficients, covariances, and log
volatilities as well as the hyperparameters in V are all independent of each other. The priors
for B0, α0, and log σ0 are assumed to be normal and the priors for Q, W , and the blocks of S
are assumed to be distributed as independent inverse-Wishart. These assumptiosn together
with (5)-(7) imply normal priors on the entire sequences BT , αT , and ΣT .

Estimates Â and Σ̂ of A and Σ can then be obtained by decomposing Ω̂ as in (2):

Ω̂ = Â−1Σ̂Σ̂′(Â′)−1.

Standard errors for the non-zero, non-one elements α̂ and σ̂ of Â and Σ̂ can be computed
using the formulas in Lutkepohl’s (2006, Ch.9, p.373) Proposition 9.5. Start by rewriting

vec(A) = RAα + rA

and
vec(Σ) = RΣσ

where RA is a 9× 3 matrix consisting of zeros except for

RA(2, 1) = 1

RA(3, 2) = 1

RA(6, 3) = 1,
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rA is a 9× 1 vector consisting of zeros except for

rA(1) = 1

rA(5) = 1

rA(9) = 1,

and RΣ is a 9× 3 matrix consisting of zeros except for

RΣ(1, 1) = 1

RΣ(5, 2) = 1

RΣ(9, 3) = 1.

Next, let K9 be the commutation matrix that, for any 3× 3 matrix D, is such that

vec(D) = Kvec(D′).

Then, in particular, K9 consists of zeros, except for

K9(1, 1) = 1

K9(2, 4) = 1

K9(3, 7) = 1

K9(4, 2) = 1

K9(5, 5) = 1

K9(6, 8) = 1

K9(7, 3) = 1

K9(8, 6) = 1

K9(9, 9) = 1

With

I
([

vec(A)
vec(Σ)

])
=

[
A−1Σ⊗ Σ−1

−(I3 ⊗ Σ−1)

]
(I9 +K9)

[
[Σ(A′)−1]⊗ Σ−1 −(I3 ⊗ Σ−1)

]
,

and

I
([
α
σ

])
=

[
R′A 03,9

03,9 R′Σ

]
I
([

vec(A)
vec(Σ)

])[
RA 09,3

09,3 RΣ

]
,

it follows from Lutkepohl’s proposition that

Var

([
α̂
σ̂

])
=

1

T

[
I
([
α
σ

])]−1

.
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Priors can now be selected along the same lines proposed by Cogley and Sargent (2005),
Primiceri (2005) and Benati (2011). Specifically, for B0, α0, and log σ0, it is assumed that

B0 ∼ N(B̂, k2
BVB),

α0 ∼ N(α̂, k2
αVα),

and
log σ0 ∼ N(log σ̂, k2

σI3),

where choices for the hyperparameters are tabulated below.

Training Sample Prior Hyperparameters

k2
B VB kα Vα k2

σ

Cogley-Sargent 1 Var(B̂) 10000 I3 10

Primiceri 4 Var(B̂) 4 Var(Â) 1

Benati 4 Var(B̂)
√

10 diag(α̂) 10

Note that (7)-(9) imply that

Bt|Bt−1, Q ∼ N(Bt−1, Q),

αt|αt−1, S ∼ N(αt−1, S),

and
log σt|σt−1,W ∼ N(log σt−1,W ).

Hence, priors for the entire sequences BT , αT , and ΣT are

p(BT |B0, Q) =
T∏
t=1

p(Bt|Bt−1, Q),

p(αT |α0, Q) =
T∏
t=1

p(αt|αt−1, S),

and

p(ΣT |Σ0, Q) =
T∏
t=1

p(log σt| log σt−1,W ).

For Q and the two blocks of S, the inverse Wishart priors are calibrated as

Q ∼ IW (dQk
2
QVQ, dQ),

S1 ∼ IW (dS1k
2
SVS1, dS1),

and
S2 ∼ IW (dS2k

2
SVS2, dS2).

Finally, for each diagonal element wi,i, i = 1, 2, 3, of W , the inverse Gamma prior used by
Cogley and Sargent (2005) and Benati (2011) can also be expressed as an inverse Wishart:

wi,i ∼ IG

(
dW
2
,
dWk

2
W

2

)
= IW (dWk

2
W , dW ).

Choices for the hyperparameters are tabulated below. Cogley and Sargent (2005) do not
allow for time-variation in the elements of A.
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Time-Varying Parameter Prior Hyperparameters

k2
Q VQ dQ k2

S VS1 dS1 VS2 dS2 k2
W dW

Cogley-Sargent 0.00035 Var(B̂) 22 − − − − − 0.0001 1

Primiceri 0.0001 Var(B̂) 40 0.01 V 1,1
α 2 V 2:3,2:3

α 3 0.0001 2

Benati 0.00035 Var(B̂) 22 0.001 α̂1 2 diag(α̂2:3) 3 0.0001 1

where V 1,1
α is the element from the first row and column of Vα, V 2:3,2:3

α is the matrix formed
from the last two rows and columns of Vα, and α̂1 and α̂2:3 correspond to the first and the
second through third elements of the vector α̂.

4 The Markov Chain Monte Carlo Algorithm

The algorithm gets initialized by choosing initial draws for αT , σT , and V from the prior dis-
tributions described above. The Gibbs sampling algorithm then loops through the following
steps.

4.1 Drawing the Coefficient States

Conditional on (αT , σT , V ), the observation equation (4) in linear and has Gaussian innova-
tions with known variance. As shown in Carter and Kohn (1994) and Fruhwirth-Schnatter
(1994), the density can be factored as

p(BT |yT , αT , σT , V ) = p(BT |yT , αT , σT , V )
T−1∏
t=1

p(Bt|Bt+1, y
t, αT , σT , V ),

where
Bt|Bt+1, y

t, αT , σT , V ∼ N(Bt|t+1, Pt|t+1),

Bt|t+1 = E(Bt|Bt+1, y
t, αT , σT , V ),

and
Pt|t+1 = Var(Bt|Bt+1, y

t, αT , σT , V ).

The vector of B’s can be drawn easily because Bt|t+1 and Pt|t+1 can be computed using
forward and backward recursions on the Kalman filter as follows.

The measurement equation for this step is (6), rewritten as

yt = X ′tBt + ut (11)

where ut = A−1
t Σtεt, Eutu

′
t = Ωt and Ωt = A−1

t ΣtΣ
′
t(A
−1
t )′, and the state transition equation

is (7):
Bt = Bt−1 + νt, (7)

where Eνtν
′
t = Q. Let

Bt|s = E(Bt|ys, Xs,Ωs, Q)
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and
Pt|s = Var(Bt|ys, Xs,Ωs, Q).

Then, given B0|0 = B̂ and P0|0 = k2
BVB, the Kalman filter implies

Bt|t−1 = Bt−1|t−1,

Pt|t−1 = Pt−1|t−1 +Q,

Kt = Pt|t−1Xt(X
′
tPt|t−1Xt + Ωt)

−1,

Bt|t = Bt|t−1 +Kt(yt −X ′tBt|t−1),

and
Pt|t = Pt|t−1 −KtX

′
tPt|t−1.

The last elements from these recursions are BT |T and PT |T , which are the mean and
variance of the normal distribution used to make a draw for BT . The draw for BT and the
output of the filter can now be used for the first step of the backward recursions

Bt|t+1 = Bt|t + Pt|tP
−1
t+1|t(Bt+1 −Bt|t) = Bt|t + Pt|t(Pt|t +Q)−1(Bt+1 −Bt|t)

and
Pt|t+1 = Pt|t − Pt|tP−1

t+1|tPt|t = Pt|t − Pt|t(Pt|t +Q)−1Pt|t,

which are the means and variances used to make the draws for Bt, t = T − 1, T − 2, . . . , 1.

4.2 Drawing Covariance States

The system of equations in (6) can be rewritten as

At(yt −X ′tBt) = Atut = Σtεt, (12)

where, taking BT as given, ut is observable from (11). Since At is a lower triangular matrix
with ones on the main diagonal, (12) can be rewritten as

ut = Ztαt + Σtεt, (13)

where αt is defined in (8) and Zt is the following 3× 3 matrix:

Zt =

 0 0 0
−uπ,t 0 0

0 −uπ,t −ug,t


The model given by (13) and (8) has a Gaussian but nonlinear state space representation.
The problem is that the dependent variable of the observation equation, ut, also appears
on the right-hand size in Zt. Therefore, the vector

[
ut αt

]
is not jointly normal and,

as a consequence, the conditional distributions cannot be computed using the standard
Kalman filter recursions. However, under the additional maintained assumption that S is
block diagonal, this problem can be solved by applying the Kalman filter and the backward
recursion equation by equation.
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Thus, consider the second equation from (13), which can be written

ug,t = Z1tαgπ,t + σg,tεg,t, (14)

where Z1t = −uπ,t and εg,t ∼ iidN(0, 1). Taking BT and σT as given, ugt and Z1t are
observable and σg,t is given as well. Equation (14) can serve as the observation equation and
the first equation from (8),

αgπ,t = αgπ,t−1 + ζ1,t (15)

as the state transition equation, where ξ1,t ∼ N(0, S1), with S1 given as well.
Thus, given αgπ,0|0 = α̂gπ and P0|0 = k2

αV
1,1
α , the Kalman filter implies

αgπ,t|t−1 = αgπ,t−1|t−1,

Pt|t−1 = Pt−1|t−1 + S1,

Kt = Pt|t−1Z
′
1t(Z1tPt|t−1Z

′
1t + σ2

g,t)
−1,

αgπ,t|t = αgπ,t|t−1 +Kt(ug,t − Z1tαgπ,t|t−1),

and
Pt|t = Pt|t−1 −KtZ1tPt|t−1.

The last elements from these recursions are αgπ,T |T and PT |T , which are the mean and
variance of the normal distribution used to make a draw for αgπ,T . The draw for αgπ,T and
the output of the filter can now be used for the first step of the backward recursions

αgπ,t|t+1 = αgπ,t|t + Pt|tP
−1
t+1|t(αgπ,t+1 − αgπ,t|t) = αgπ,t|t + Pt|t(Pt|t + S1)−1(αgπ,t+1 − αgπ,t|t)

and
Pt|t+1 = Pt|t − Pt|tP−1

t+1|tPt|t + Pt|t − Pt|t(Pt|t + S1)−1Pt|t,

which are the means and variances used to make the draws for αuπ,t, t = T − 1, T − 2, . . . , 1.
Now consider the third equation from (13), which can be written

ur,t = Z2tα2,t + σr,tεr,t, (16)

where Z2t =
[
−uπ,t −ug,t

]
, α2,t =

[
αrπ,t αrg,t

]′
, and εr,t ∼ iidN(0, 1). Taking BT and σT

as given, urt and Z2t are observable and σr,t is given as well. Equation (16) can serve as the
observation equation and last two equations from (8),

α2,t = α2,t−1 + ξ2,t (17)

as the state transition equation, where ξ2,t ∼ N(0, S2), with S2 given as well.

Thus, given α2,0|0 =
[
α̂rπ α̂rg,t

]′
and P0|0 = k2

αV
2:3,2:3
α , the Kalman filter implies

α2,t|t−1 = α2,t−1|t−1,

Pt|t−1 = Pt−1|t−1 + S2,

Kt = Pt|t−1Z
′
2t(Z2tPt|t−1Z

′
2t + σ2

r,t)
−1,
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α2,t|t = α2,t|t−1 +Kt(ur,t − Z2tα2,t|t−1),

and
Pt|t = Pt|t−1 −KtZ2tPt|t−1.

The last elements from these recursions are α2,T |T and PT |T , which are the mean and
variance of the normal distribution used to make draws for αrπ,T and αrg,T . The draw for
α2,T and the output of the filter can now be used for the first step of the backward recursions

α2,t|t+1 = α2,t|t + Pt|tP
−1
t+1|t(α2,t+1 − α2,t|t) = α2,t|t + Pt|t(Pt|t + S2)−1(α2,t+1 − α2,t|t)

and
Pt|t+1 = Pt|t − Pt|tP−1

t+1|tPt|t = Pt|t − Pt|t(Pt|t + S2)−1Pt|t,

which are the means and variances used to make the draws for αuπ,t, t = T − 1, T − 2, . . . , 1.

4.3 Drawing Volatility States

Consider next the system of equations

At(yt −X ′tBt) = y∗t = Σtεt, (18)

where, taking BT and αT as given, y∗t is observable. This is a system of nonlinear measure-
ment equations, but can be converted into a linear one by squaring and taking logs of every
element of (18). Due to the fact that y2

i,t can be very small, an offset constant can be used
to make the estimation procedure more robust. This leads to the following approximating
state space form:

y∗∗t = 2ht + et (19)

and
ht = ht−1 + ηt, (20)

where y∗∗i,t = log[(y∗i,t)
2 + c̄], c̄ is the offset constant, set equal to 0.001, ei,t = log(ε2

i,t), and
hi,t = log σi,t.

This system has a linear, but non-Gaussian, state space form because the innovations in
the measurement equations are distributed as logχ2(1). In order to further transform the
system into a Gaussian one, a mixture of normals approximation of the logχ2 distribution is
used, as described by Kim, Shephard, and Chib (1998). This involves selecting a mixture of
seven normal densities with component probabilities qj, means mj−1.2704 and variances v2

j ,
where the constants are chosen to match a number of moments of the logχ2(1) distribution
as reported in Table 4 (p.371) from their paper:

Distribution for the Indicator Variables

ω qj = Pr(ω = j) mj v2
j

1 0.00730 -10.12999 5.79596
2 0.10556 -3.97281 2.61369
3 0.00002 -8.56686 5.17950
4 0.04395 2.77786 0.16735
5 0.34001 0.61942 0.64009
6 0.24566 1.79518 0.34023
7 0.25750 -1.08819 1.26261
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Define sT =
[
s1 . . . sT

]′
, the matrix of indicator variables selecting at every point in

time which member of the mixture of the normal approximation will be used for each element
of e. Given (y∗∗)T and hT , each element si,t of ST is sampled from the discrete density defined
by

Pr(si,t = j|y∗∗i,t , hi,t) ∝ qjfN(y∗∗i,t |2hi,t +mj − 1.2704, v2
j ),

j = 1, 2, . . . , 7, where fN(·|µ, v2) denotes the pdf for a normal random variable with mean µ
and variance v2. Conditional on BT , AT , V and sT , the system has an approximate linear
and Gaussian state space form, where each element ei,t of et in (17) can now be viewed as
being distributed as normal with mean mj − 1.2704 and variance v2

j if si,t = j.
For each t = 1, 2, . . . , T , let mt denote the 3×1 vector consisting of the means mj−1.2704

of each element of et as determined above and let Vt denote the 3 × 3 matrix with the
corresponding variances v2

j along its diagonal. Finally, define xt = y∗∗t −mt + 1.2704. Now
(19) can be rewritten as the observation equation

xt = 2ht + et, (21)

where et ∼ N(0, Vt) and
ht = ht−1 + ηt (20)

remains as the state transition equation, with ηt ∼ N(0,W ).
Given h0|0 = log σ̂ and P0|0 = k2

σI3, the Kalman filter implies

ht|t−1 = ht−1|t−1,

Pt|t−1 = Pt−1|t−1 +W,

Kt = 2Pt|t−1(4Pt|t−1 + Vt)
−1,

ht|t = ht|t−1 +Kt(xt − 2ht|t−1),

and
Pt|t = Pt|t−1 − 2KtPt|t−1.

The last elements from these recursions are hT |T and PT |T , which are the mean and
variance of the normal distribution used to make a draw for hT . The draw for hT and the
output of the filter can now be used for the first step of the backward recursions

ht|t+1 = ht|t + Pt|tP
−1
t+1|t(ht+1 − ht|t) = ht|t + Pt|t(Pt|t +W )−1(ht+1 − ht|t)

and
Pt|t+1 = Pt|t − Pt|tP−1

t+1|tPt|t = Pt|t − Pt|t(Pt|t +W )−1Pt|t,

which are the means and variances used to make the draws for ht, t = T − 1, T − 2, . . . , 1.
Del Negro and Primiceri (2015b) note that, strictly speaking, because the mixture-of-

normals distribution used in the Kim-Shephard-Chib algorithm is only an approximation
to the true distribution of the innovations in the measurement equation (19), each draw
selected using this algorithm should be used as a proposal in a Metropolis-Hastings step,
following the general analysis in Stroud, Muller, and Polson (2003). With y∗t and y∗∗i,t defined

as above, let Σ̃t and Σold
t be the latest and previous draws for the volatility state for period
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t = 1, 2, . . . , T , and let σ̃i,t and σoldi,t be the ith diagonal elements of Σ̃t and Σold
t . Del Negro

and Primiceri (2015a) show that in the Metropolis step, the new draw should be accepted
with probability α, where

α =

[∏T
t=1 FN(y∗t |03,1, Σ̃tΣ̃

′
t)
] [∏T

t=1

∏3
i=1

∏7
j=1 qjfN(y∗∗i,t |2σoldi,t +mj − 1.2704, v2

j )
]

[∏T
t=1 FN(y∗t |03,1,Σold

t (Σold
t )′)

] [∏T
t=1

∏3
i=1

∏7
j=1 qjfN(y∗∗i,t |2σ̃i,t +mj − 1.2704, v2

j )
] ,

and FN(·|µ, V ) is the pdf for the multivariate normal distribution with mean µ and covariance
matrix V .

4.4 Drawing Hyperparameters

The hyperparameters are the diagonal blocks of V , each of which has an inverse-Wishart
posterior distribution. Conditional on BT , αT , σT , and yT , it is easy to draw from these
posteriors because the innovations are observable. Use (7) to compute

νt = Bt −Bt−1,

use (15) to compute
ζ1,t = αuπ,t − αuπ,t−1,

use (17) to compute
ζ2,t = α2,t − α2,t−1,

and use (9) to compute
ηt = log σt − log σt−1.

Then a new draw for Q can be taken from the inverse-Wishart posterior distribution with
scale matrix

dQk
2
QVQ +

T∑
t=1

νtν
′
t,

and degrees of freedom dQ + T , a new draw for S1 can be taken from the inverse-Wishart
posterior distribution with scale matrix

dS1k
2
SVS1 +

T∑
t=1

ζ1,tζ
′
1,t,

and degrees of freedom dS1 + T , a new draw for S2 can be taken from the inverse-Wishart
posterior distribution with scale matrix

dS2k
2
SVS2 +

T∑
t=1

ζ2,tζ
′
2,t,

and degrees of freedom dS2 +T , and new draws for each diagonal element of W can be taken
from the inverse-Wishart posterior distributions with scale matrix

dWk
2
W +

T∑
t=1

ηtη
′
t,

which in this case is a scalar, and degrees of freedom dW + T .
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4.5 Assessing Convergence

To assess the convergence of the MCMC algorithm, Primiceri (2005) recommends initializing
the chain from different, randomly selected starting points, to verify that none of the results
is affected. A related but slightly more formal approach is suggested by Geweke (1992).
For any model statistic θ, which may be an element of BT , AT , ΣT , V , or any function of
these parameters, calculate the means θ̄A and θ̄B from two disjoint subsamples of the Gibbs
sampling output: Geweke suggests letting subsample A be formed from the first 10 percent
of the draws and subsample B from the last 50 percent of the draws. The numerical standard
errors of the means θ̄A and θ̄B are given by(

1

NA

)
[2πSθ,A(0)] and

(
1

NB

)
[2πSθ,B(0)],

where Sθ,A(0) and Sθ,B(0) denote the spectral densities of θ̂A and θ̂B at frequency zero, which
can be estimated using Newey and West’s (1987) Bartlett weighting scheme as

Sθ,A(0) =
1

2π

[
υθ,A,0 + 2

m∑
j=1

(
1− j

m+ 1

)
υθ,A,j

]

and

Sθ,B(0) =
1

2π

[
υθ,B,0 + 2

m∑
j=1

(
1− j

m+ 1

)
υθ,B,j

]
,

where υθ,A,j and υθ,B,j are the jth autocovariances of the draws for θ in subsamples A and
B. Geweke’s convergence diagnostic

CD(θ) =
θ̄A − θ̄B

{N−1
A [2πSθ,A(0)] +N−1

B [2πSθ,B(0)]}1/2
⇒ N(0, 1),

which, as shown, has the standard normal distribution as NA →∞ and NB →∞.
To gauge the extent to which the chain mixes, Primiceri (2005) and Benati (2011) com-

pute inefficiency factors, described in more detail by Chib (1992, pp.3579-3580). The ineffi-
ciency factor for any individual statistic θ, which may again be an element of BT , AT , ΣT ,
V , or any function of these parameters, is defined as the inverse of Geweke’s (1992) measure
of relative numerical efficiency:

IF (θ) =
2πSθ(0)

Var(θ)
=

2πSθ(0)∫ π
−π Sθ(ω)dω

,

where Sθ(ω) is the spectral density of θ at frequency ω so that, in particular, Sθ(0) is the
spectral density of θ at frequency zero. Primiceri notes that

IF (θ) = 1 + 2
∞∑
j=1

ρθ,j,
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where ρθ,k is the j-th autocorrelations of the draws for θ. Hence, IF (θ) will generally be
larger than one, and lower values of IF (θ) reflect less autocorrelation in the draws. In
computing IF (θ), Newey and West’s (1987) estimator

Sθ(0) =
1

2π

[
υθ,0 + 2

m∑
j=1

(
1− j

m+ 1

)
υθ,j

]

can be used for the numerator, while the denominator is simply the variance υθ,0 across all
draws for θ.

5 Identification of Monetary Policy Shocks

5.1 The Identification Problem

Two approaches can be taken to identify monetary policy shocks from the estimated reduced
form. The first uses assumptions about the timing with which monetary policy disturbances
affect inflation and the gap variable to re-interpret the triangular factorization of the reduced-
form covariance matrix shown in (2) as a mapping between the reduced-form and structural
models – an approach that dates back to Sims (1980). The second uses sign restrictions
to identify monetary policy shocks based on their implied impulse responses. Faust (1998),
Canova and De Nicolo (2002), and Uhlig (2005) propose and develop the idea that sign
restrictions can serve a source of identifying assumptions in VARs, and Benati (2011) im-
plements the particular scheme used here in a similar VAR framework with time-varying
parameters.

Details on each of the two identification strategies follows, but each works to factor the
reduced-form covariance matrix as

Ωt = C−1
t DtD

′
t(C

′
t)
−1, (22)

where Ct and Dt are 3× 3 matrices of the form

Ct =

 1 −cπg,t −cπr,t
−cgπ,t 1 −cgr,t
−crπ,t −crg,t 1

 (23)

and

Dt =

δπ,t 0 0
0 δg,t 0
0 0 δr,t

 (24)

Equations (22)-(24) provide the general mapping between the reduced-form (1) and the
structural model, which can now be written as

Ctyt = γt + Γ1,tyt−1 + Γ2,tyt−2 +Dtξt, (25)

where γt = Ctbt, Γj,t = CtBj,t for j = 1, 2, and ξt is a 3× 1 vector of structural disturbances,
normally distributed with zero mean and Eξtξ

′
t = I3. The third row from (25) takes the
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form of a monetary policy rule

Rt = γr,t + crπ,tΠt + γ1,rπ,tΠt−1 + γ2,rπ,tΠt−2

+ crg,tGt + γ1,rg,tGt−1 + γ2,rg,tGt−2 + γ1,rr,tRt−1 + γ2,rg,tRt−2 + δr,tξ
mp
t ,

(26)

where the constant term and the coefficients on lagged values of inflation, the gap variable,
and the interest rate are those from the third rows of γt, Γ1,t and Γ2,t, and ξmpt represents the
identified monetary policy shock. This policy rule takes the same general form as Taylor’s
(1993), in that it prescribes a setting for the short-term interest rate with reference to the
changing values of inflation and the gap variable. However, (26) allows for considerably
flexibility in the dynamic response of the short-term interest rate to changes in inflation and
the gap variable and, through the inclusion of lagged interest rate terms on the right-hand
side, captures as well the Federal Reserve’s tendency to smooth interest rate movements over
time. Deviations in the actual short-term interest rate away from the value dictated by the
current and lagged values of inflation, the gap variable, and the interest rate get picked up as
monetary policy shocks in (26). Finally, (26) allows for time-variation in all of the response
coefficients and in the standard deviation δr,t of the monetary policy shocks.

Comparing (3) and (4) to (23) and (24) highlights the identification problem: together,
the matrices At and Σt of reduced-form parameters contain 6 elements not equal to zero or
one, whereas the matrices Ct and Dt of structural parameters have 9 such elements. Each
of the two identification schemes described next imposes more structure on the matrix Ct to
solve this problem.

5.2 Triangular Identification Based on Timing Assumptions

The factorization of the symmetric, positive definite reduced-form covariance matrix Ωt

shown in (2)-(4) always exists and is unique; hence, the model can be written in this form
without any loss of generality. However, under the additional assumptions – made through-
out much of the literature on VARs that builds on Sims (1980) – that inflation and the
output gap respond to monetary policy shocks only after a one-period lag, the reduced-form
parameters from the third rows of (2)-(4) are linked to structural parameters from the third
rows on (22)-(24) via

crπ,t = −αrπ,t,

crg,t = −αrg,t,

and
δr,t = σr,t

and the structural monetary policy shock ξmpt from (25) and (26) is identified as the third
element of the vector εt from (5).

5.3 Sign Restrictions for the Variables that Respond to Monetary
Policy

An alternative approach to identification builds on work by Faust (1998), Canova and De
Nicolo (2002), and Uhlig (2005) by associating monetary policy shocks with the effects they
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have on observable variables. Following Benati (2011), suppose that the first element of ξt
corresponds to a supply shock that moves inflation and the output gap in opposite directions
or inflation and the unemployment rate in the same direction. Suppose that the second
element of ξt is a non-monetary demand shock, that moves the short-term interest rate and
inflation in the same direction and the interest rate and the output gap in the same direction
or the interest rate and the unemployment rate in opposite directions. Finally, suppose that
the third element of ξt corresponds to a monetary policy shock that moves the short-term
interest rate and inflation in opposite directions and the interest rate and the output gap in
opposite directions or the interest rate and the unemployment rate in the same direction.
Rubio-Ramirez, Waggoner, and Zha (2010) and Arias, Rubio-Ramirez, and Waggoner (2014)
emphasize that sign restrictions of this form do not suffice to identify structural disturbances
in the classical sense, but develop a Bayesian algorithm for characterizing the set of parameter
values implying impulse responses that satisfy these restrictions.

Let the index i = 1, 2, . . . , N keep track of the number of desired draws. For i =
1, 2, . . . , N , the algorithm loops through the following steps.

1. Draw (AT ,ΣT ) from their posterior distribution during the Gibbs sampling stage.

2. For each t = 1, 2, . . . , T , construct At and Σt based on the draw for (AT ,ΣT ). Then let
Lt = A−1

t Σt, so that the reduced-form error covariance matrix is given by Ωt = LtL
′
t.

3. Draw X̃, a 3 × 3 random matrix with each element having an independent standard
normal distribution. Then factor X̃ = QXRX , where QX is an orthogonal matrix and
RX is upper triangular with positive diagonal elements.

4. Let L̃t = LtQ
′
X , and note that

L̃tL̃
′
t = LtQ

′
XQXL

′
t = LtL

′
t = Ωt,

by virtue of the fact that QX is orthogonal. This highlights that multiplying the
structural model (25) through by D−1

t and then QX results in an observationally-
equivalent rotation of the model’s three equations. Suppressing for convenience explicit
reference to the constant and lagged terms in (25), the candidate structural model based
on the specific draw for QX can be written as

yt = L̃tξt,

since
E[(L̃tξt)(L̃tξt)

′] = E(L̃tξtξ
′
tL̃
′
t) = L̃tE(ξtξ

′
t)L̃
′
t = L̃tL̃

′
t = Ωt.

Thus, the matrix L̃t contains impact coefficients linking the structural shocks in ξt to
the observable variables in yt. The sign restriction used to identify the supply, demand,
and monetary policy shocks as the first, second, and third elements of ξt require the
elements of L̃t to have the sign patterns

L̃t =

(+) (+) (−)
(−) (+) (−)
(?) (+) (+)


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if the gap variable is measured by the output gap and

L̃t =

(+) (−) (−)
(+) (+) (+)
(?) (−) (+)


if the gap variable is measured by the unemployment rate. If these restrictions are not
satisfied for any t = 1, 2, . . . , T , the draws for (AT ,ΣT ) and X̃ are discarded and the
algorithm returns to step one. If the restrictions are satisfied, then L̃t is renormalized
as L̃t = C−1

t Dt, where Ct and Dt have the forms shown in (23) and (24), these draws
are saved, and the Gibbs sampling algorithm moves on.

5.4 Other Statistics

Once draws are obtained for the structural parameters using one of three identification
schemes, impulse responses can be generated from (25) after multiplying through by C−1

t .
These computations can be simplified by writing the system in companion form as

Yt − µ̄t +B12,t(Yt−1 − µ̄t) + Ftξt, (27)

where

Yt =

[
yt
yt−1

]
,

B12,t =

[
B1,t B2,t

I3 03,3

]
, (28)

µ̄t = (I6 −B12,t)
−1

[
bt

03,1

]
, (29)

and

Ft =

[
C−1
t Dt

03,3

]
. (30)

Following Cogley and Sargent (2005), the first element of the vector µ̄t defined in (29) can
also be used as a measure of core, or target, inflation and, in the case where the gap variable
is measured by the unemployment rate, the second element of µ̄t can be interpreted as an
estimate of the natural rate of unemployment.

Since (27) implies

Yt+k − EtYt+k = Ftξt+k +B12,tFtξt+k−1 + . . .+Bk−1
12,t Ftξt+1,

the k-step ahead forecast error variances for the elements of Yt are

E[(Yt+k − EtYt+k)(Yt+k − EtYt+k)′] = FtF
′
t +B12,tFtF

′
tB
′
12,t + . . .+Bk−1

12,t FtF
′
t(B

k−1
12,t )′. (31)

Forecast error variances decompositions can be found by using (28), (30), and (31) to compute
the total variances and then by using these same equations with the first two diagonal
elements of Dt set equal to zero to find the variances attributable to monetary policy shocks
alone.

17



Finally, it may be helpful to consider the “artificial” long-run responses, as defined by
Sims and Zha (2006, p.62), of the interest rate to changes in inflation and the gap variable.
From (26), these are

γrπ,t =
crπ,t + γ1,rπ,t + γ2,rπ,t

1− γ1,rr,t − γ2,rr,t

for inflation and

γrg,t =
crg,t + γ1,rg,t + γ2,rg,t

1− γ1,rr,t − γ2,rr,t

.

for the gap variable.
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