dnm. /éﬂé or%ame*lé

Principio de responsabilidad dnica

—

Este articulo, dedicado al llamado "Principio de responsabilidad unica", es el primero de una serie de cin-
co articulos que descubren cinco principios fundamentales del paradigma de la Programacion Orienta-

da a Objetos (POO).

José Miguel Torres y Hadi Hariri

MVP de Device Application Development
y Technical Evangelist en JetBrains

Fue en los preparativos del Code Camp
de Tarragona 2009 cuando surgio la idea de escri-
bir esta serie de articulos para describir cinco prin-
cipios fundamentales de la POO cuyas iniciales con-
forman las siglas SOLID. La comprension de dichos
principios nos permitira mejorar la percepcion del
no siempre facil campo de la POO, evitando asi
malas practicas que la gran flexibilidad que ofrece
esta metodologia otorga, fundamentalmente a través
de los lenguajes y herramientas que la soportan.

Las herramientas de desarrollo rdpido (Rapid
Application Development, RAD), como Visual Studio
2010, ofrecen al desarrollador un conjunto de fun-
cionalidades que aumentan, ya sea a través de asis-
tentes o mediante "arrastrar y soltar", la productivi-
dad en el desarrollo de aplicaciones, y le permiten
focalizarse tnicamente en la utilizacién de propie-
dades o eventos especificos, sin tener que preocu-
parse en muchas ocasiones del codigo generado "por
debajo". Sin embargo, en ocasiones acabamos pagan-
do un precio muy elevado, ya que estas herramien-
tas dejan tras de si "cajas negras logicas" de codigo
dificiles de modificar o reutilizar, en las que los con-
ceptos clave de la orientacion a objetos son sacrifi-
cados en aras de la productividad; pero hablar de pro-
ductividad es hablar de facilidad de mantenimiento
y calidad del software, con lo que dicho sacrificio, sen-
cillamente, no tiene o deberfa tener cabida.

Cohesion

Para tratar de comprender el término "nivel de cohe-
sién", vamos a utilizar como ejemplo el teléfono
movil. Como todos sabéis, un dispositivo movil

""ﬁv‘

[}
Zmsdn

estd compuesto por una serie de componentes,
tales como la pantalla, el teclado, la radio GPRS/3G,
el moédulo Bluetooth, etc. Todos estos componen-
tes tienen una responsabilidad especifica, ya sean
los modulos de entrada y salida de datos o los
maodulos de conectividad y comunicacion, etcéte-
ra, y por tanto existe una cohesion entre todos los
componentes, ya que no hay ninglin componente
que haga funciones que se solapen con las de otros
componentes, ni ninguna funcion basica que no
quede descubierta por un determinado compo-
nente. A la hora de buscar un nuevo maévil, mira-
remos las caracteristicas y especificaciones técni-
cas del dispositivo, y ademds de contemplar las
especificaciones que deseamos, también espera-
remos que los componentes sean de alta calidad;
no es viable que un maovil esté compuesto por los
ultimos componentes electrénicos del mercado y
se venda con una pantalla no tactil en "blanco y
negro" de 3 pulgadas, o que, por ejemplo, no ten-
ga algo tan bdsico como un micréfono.

En un sistema informdtico también tenemos
componentes (ademéds de mdédulos, clases, etc.),
y todos estos componentes l6gicos tienen su res-
ponsabilidad dentro del sistema. Pensemos pues
en el nivel de cohesién de una aplicacion no como
en una suma de los componentes, sino como el
conjunto de los mismos.

Acoplamiento

Siguiendo con el ejemplo del teléfono mévil, un
ejemplo de acoplamiento lo encontramos en los
cargadores de nuestros moviles. Son cada vez més

http://msdn.microsoft.com/es-ES/

d nm.ﬁ/ﬁ.ﬁ«/mnama‘l=.=

los fabricantes que optan por adaptado-
res de corriente estandar en lugar de cre-
ar adaptadores propietarios que casi
siempre acaban tirados en el contenedor
de reciclaje cuando sustituimos el mévil.
Se entiende que se opta por la universa-
lidad de los dispositivos de corriente para
su reaprovechamiento en otros disposi-
tivos, incluso de diferentes fabricantes.
En la ingenieria del software, el acopla-
miento entre mddulos, clases o cualquier
otro tipo de entidad l6gica es el grado de
dependencia entre ellos. Cuanto mas
estandar sea la relacion de una entidad
l6gica con otras, mayor reaprovecha-
miento podremos hacer de ella.

Encapsulacion

Seguramente se habrd dado cuenta de
que la parte interna de un mévil no es facil-
mente accesible; es decir, no tenemos
acceso ala electronicainterna. La idea de
la encapsulacién es la de abstraer deter-
minadas funciones para que, ademés de
ser reutilizables, no requieran que los
usuarios tengan los conocimientos del
disefiador. La complejidad de un disposi-
tivo moévil o de cualquier otro dispositivo
electrénico es muy elevada, y la gran
mayoria de usuarios son capaces de sacar-
le el médximo provecho sin tener nociones
especificas sobre su arquitectura interna.
La radio Bluetooth o el médem GPRS/3G
son los mismos para varios modelos,
incluso de diferentes fabricantes. Esta es
precisamente |a idea de la encapsulacion
de funciones o caracteristicas, que lo uni-
co que requiere es que el usuario sepa qué
se puede hacer con esa funcién y no como
estd disenada.

Aplicaciones SOLIDas

Siguiendo el modelo del teléfono movil y
la idea subyacente de estos tres aspec-
tos, podriamos afirmar que el teléfono
ideal serfa aquel que estuviera compues-
to por los mejores componentes del mer-
cado, cuyas interfaces de conexién para
la sincronizacion de datos y recarga de |a
bateria fueran estandares, y cuyas fun-
cionalidades pudiéramos conocer en pro-

fundidad sin necesidad de tener que con-
sultar detalles en la documentacion téc-
nica para saber cémo han sido disefia-
das y asi poder sacarles el méaximo pro-
vecho.

Extrapolando este ejemplo a nuestro
mundo, el mundo del software, tenemos
que tener siempre presentes estos tres
aspectos fundamentales desde el momen-
to mismo en que empezamos el disefio
de una nueva aplicacion. Es ahi donde
entran en escena los cinco principios des-
critos por el acrénimo mnemotécnico
SOLID y presentados a principio de esta
década por Robert C. Martin (figura 1).

RP - Single Responsibility Principle

CP - Open Closed Principle
SP - Liskov Substitution Principle

SP - Interface Segregation Principle

IP - Dependency Inversion Principle

Figura 1. Los cinco principios SOLID

Los principios SOLID pretenden ser
una guia a seguir durante la fase de
desarrollo para facilitar el manteni-
miento de las aplicaciones y tratar de
eliminar el impacto de las inevitables
modificaciones que éstas sufren duran-
te su ciclo de vida, ademas de facilitar
el uso de las unidades de testeo, entre
otras ventajas.

Principio de responsabilidad dnica

El Principio de responsabilidad unica (Sin-
gle Responsability Principle - SRP) fue
acufiado por Robert C. Martin en un arti-
culo del mismo titulo y popularizado a
través de su conocido libro [1]. SRP tiene

que ver con el nivel de acoplamiento entre
mddulos dentro de la ingenieria del soft-
ware. En términos prdcticos, este princi-
pio establece que:

Una clase debe tener una y solo una
tinica causa por la cual puede ser modi-
ficada.

Si una clase tiene dos responsabili-
dades, entonces asume dos motivos por
los cuales puede ser modificada. Por
ejemplo, supongamos una clase llama-
da Factura, la cual dentro de un contex-
to determinado ofrece un método para
calcular el importe total, tal y como mues-
tra la figura 2.

Factura E3)
Class

= Fields

@ _codigo

@ _fechaEmision

@ _importeDeduccion

¥ _importeFactura

¥ _importelVA

@ _importeTotal
_porcentajeDeduccion
= Methods

‘@ CalcularTotal

<

Figura 2

Detectando responsabilidades

La piedra angular de este principio es la
identificacion de la responsabilidad real
de la clase. Segun SRP, una responsabi-
lidad es "un motivo de cambio"; algo que
en ocasiones es dificil de ver, ya que esta-
mos acostumbrados a pensar un con-
junto de operaciones como una sola res-
ponsabilidad.

Siimplementamos la clase Factura
tal y como se muestra en el listado 1,

Los principios SOLID pretenden ser una guia a seguir
durante la fase de desarrollo para facilitar el manteni-
miento de las aplicaciones

& | dotNetMania

http://msdn.microsoft.com/es-ES/

dnm. L‘é/x ortma . h e%
Lot

\US) ”
~ | dotNetMania

public class Factura
{
public string _codigo;
public DateTime _fechaEmision;

public decimal _importeFactura;
public decimal _importeIVA;

public decimal _importeDeduccion;
public decimal _importeTotal;
public ushort _porcentajeDeduccion;

// Método que calcula el total de la factura

public void CalcularTotal()
{

// Calculamos la deduccidn

_importeDeduccion = (_importeFactura * _porcentajeDeduccion) / 100;

// Calculamos el IVA
_importeIVA = _importeFactura * @.16m;
// Calculamos el total

_importeTotal = (_importeFactura - _importeDeduccion) + _importeIVA;

Listado 1

podriamos decir que la responsabili-
dad de esta clase es la de calcular el
total de la factura y que, efectivamen-
te, la clase cumple con su cometido.
Sin embargo, no es cierto que la clase
contenga una Unica responsabilidad. Si
nos fijamos detenidamente en la imple-
mentacién del método CalcularTotal,
podremos ver que, ademds de calcular
el importe base de la factura, se estd
aplicando sobre el importe a facturar
un descuento o deducciony un 16% de
IVA. El problema esta en que si en el
futuro tuviéramos que modificar la tasa
de IVA, o bien tuviéramos que aplicar
una deduccion en base a una tarifa por
cliente, tendrfamos que modificar la cla-
se Factura por cada una de dichas razo-
nes; por lo tanto, con el disefio actual
las responsabilidades quedan acopla-
das entre si, y la clase violaria el prin-
cipio SRP.

Separando responsabilidades

El primer paso para solucionar este pro-

p
{

ublic class IVA
public readonly decimal _iva = 0.16m;
public decimal CalcularIVA(decimal importe)

{

return importe * _iva;

public class Deduccion

{

private decimal _deduccion;

public Deduccion(ushort porcentaje)

{

_deduccion = porcentaje;

blema es separar las responsabilidades;
para separarlas, primero hay que identi-
ficarlas. Enumeremos de nuevo los pasos
que realiza el método CalcularTotal':

o Aplica una deduccién. En base a la base
imponible se calcula un descuento por-
centual.

o Aplica la tasa de IVA del 16% en base
a la base imponible.

e Calcula el total de la factura, teniendo
en cuenta el descuento y el impuesto.

En este método se identifican tres res-
ponsabilidades. Recuerde que una res-
ponsabilidad no es una accién, sino un
motivo de cambio, y por lo tanto se
deberian extraer las responsabilidades de
deduccion e impuestos en dos clases
especificas para ambas operaciones; esta-
bleciendo por un lado la clase IVA'y por
otro la clase Deduccion, tal y como se
presenta en el listado 2.

public decimal CalcularDeduccion(decimal importe)

{

return (importe * _deduccion) / 100;

Listado 2

Es muy probable que si algiin contable o inspector financiero viera estas operaciones, como minimo nos llevariamos un tirdn de orejas; pero démoslas por buenas

para los fines de este articulo.

”, ‘ i
2 msdn

http://msdn.microsoft.com/es-ES/

dnm .ﬁ/méa/cr%a ‘% NL.=.=

public class Factura
{
public string _codigo;
public DateTime _fechaEmision;

public decimal _importeFactura;
public decimal _importeIVA;

public decimal _importeDeduccion;
public decimal _importeTotal;
public ushort _porcentajeDeduccion;

// Método que calcula el total de la factura
public void CalcularTotal()
{
// Calculamos la deduccién
Deduccion deduccion =
new Deduccion(_porcentajeDeduccion);
_importeDeduccion =
deduccion.CalcularDeduccion(
_importeFactura);
// Calculamos el IVA
IVA iva = new IVA();
_importeIVA = iva.CalcularIVA(
_importeFactura);
// Calculamos el total
_importeTotal = (_importeFactura -
_importeDeduccion) +
_importelIVA;

Listado 3

Ambas clases contienen datos y un método y se
responsabilizan Unicamente en calcular el IVA'y la
deduccion, respectivamente, de un importe. Ademds,
con esta separacion logramos una mayor cohesion y
un menor acoplamiento, al aumentar la granularidad
de la solucién. La correcta aplicacion del SRP sim-
plifica el codigo y se traduce en facilidad de mante-
nimiento, mayores posibilidades de reutilizacién de
codigo y de crear unidades de testeo especificas orien-
tadas a cada clase/responsabilidad. El listado 3 mues-
tra la nueva versién de la clase Factura, que hace uso
de las dos nuevas clases IVA y Deduccion.

La correcta aplicacion del SRP simplifica el
codigo y se traduce en facilidad de manteni-
miento, mayores posibilidades de reutilizacion
de codigo y de crear unidades de testeo
especificas para cada responsabilidad

Ampliando el abanico de "responsabilidades”

Comentdbamos anteriormente que no es facil detectar las
responsabilidades, ya que generalmente tendemos a agru-
parlas. No obstante, existen escenarios o casuisticas en los
que "se permite" una cierta flexibilidad. Robert C. Martin
expone un ejemplo utilizando la interfaz Modem:

interface Modem

void dial(int pNumber);
void hangup();

void send(char[] data);
char[] receive();

En este ejemplo se detectan dos responsabilidades,
relacionadas con la gestion de la comunicacion (dial y
hangup) y la comunicacion de datos (send y receive).
Efectivamente, cada una de las funciones puede cam-
biar por diferentes motivos; sin embargo, ambas fun-
ciones se llamaran desde distintos puntos de la aplica-
ciony no existe una dependencia entre ellas, con lo que
no perderiamos la cohesion del sistema.

Conclusion

Pensemos siempre en el ciclo de vida de una aplicacion,
y no unicamente en su disefio y desarrollo. Toda apli-
cacion sufre modificaciones a causa de cambios en los
requisitos o arreglo de fallos existentes, y el equipo de
desarrollo puede variar; si a ello le sumamos que el codi-
go es poco mantenible, los costes de mantenimiento se
disparardn, y cualquier modificacion se presentara como
una causa potencial de errores en entidades relaciona-
das dentro del sistema.

Referencias

[17 Martin, Robert C. "Agile Software Development: Principles, Patterns, and Practices". Prentice-Hall, 2002.

[2] Centro de Arquitectura de MSDN. http://msdn.microsoft.com/es-ES/architecture.

-

—~ =
""'W‘

[
o]
.o

msdn

[UN) .
= | dotNetMania

http://msdn.microsoft.com/es-ES/
http://msdn.microsoft.com/es-ES/architecture

