

PERSONAL COMPUTER

FX-730P
I OWNER'S MANUAL I

The contents of this manual may be subject to change without notice.
Unlawful copying of all or any portion of this manual is strictly forbidden.
Please be aware that the use of this manual for other than personal use
without permission from CASIO is prohibited under the copyrighting law.
CASIO Computer Co., Ltd. shall not be held responsible for any damages
or losses resulting from the use of this manual.

ii

Foreword

Tliis manual contains easily comprehensible explanations on the numerous

functions of this computer.

The first feature of this equipment is the fullness of its scientific functions

including statistical calculations. Incorporating many numeric functions and

basic statistics, this computer will enable you to carry out troublesome scientific

and technological calculations as well as statistical calculations by simple opera­

tion. In addition, more advanced calculations can be made by using a BASIC

program.

The second feature is the "FUNCTION MEMORY", which makes possible

storage of numeric expressions to enable outputting calculation results by

inputting the necessary numeric values. By using this function, you can easily
make numeric calculations without any special BASIC program.

The third feature is the "DATA BANK function," which permits the use of this

computer as an "electronic memo pad." Unlike a paper memo pad which

requires laborious efforts later to put the individual entries in order or retrieve

them, this computer performs such work quite simply.
As shown above, this computer can be used by a wide variety of people -

persons who want to learn BASIC for the first time, those who already know

BASIC and want to make full use of this computer.

We hope that this manual will enable you to make effective use of this computer

for many years to come.

Prior to Operation

This computer was delivered to you through CASIO's strict testing process, high

level electronics technology, and strict quality control.

To ensure a long life for your computer, please observe the following precau­

tions.

• Utilization Precautions
• Since this computer consists of precision electronic parts, do not disassemble

it. Also do not apply an impact to it by throwing or dropping it, or do not

expose it to rapid temperature changes. In addition, do not store it in a place

with high temperatures or high humidity , or in a dusty place. When the com­

puter is utilized in low temperatures, sometimes the display response is slow

or does not operate. When normal temperature conditions are restored, how­

ever , the computer operation will become normal.

• Special care should be taken not to damage the computer by bending. For

example, do not carry it in your hip pocket.

• Please do not connect units other than the F A-3, F A-5, SB-42 and FP- l 2S to

the connector portion.

• Although the display sometimes becomes faint while the buzzer is sounding,

it is not a malfunction. However, if the display becomes very faint, replace

the batteries with new ones as soon as possible .

• Every two years, replace the batteries with new ones even if the computer is

not used. Do not leave exhausted batteries inside it because trouble may

occur due to battery leakage.

• Always keep the cap for the connector portion in place. Remove it only

when peripherals are to be connected to the computer.

• If strong static electricity is applied to the computer, sometimes the memory

content is changed, or key operation cannot be performed. To discharge

static electricity accumulated in your body, touch a metallic substance like a

door knob . If this occurs, remove the batteries, then replace them again.

• Always turn computer power off before connecting peripherals.

• To clean the computer, do not use volatile liquids such as benzine or thinner.

Wipe it with a soft dry cloth, or a cloth dampened with a neutral detergent

solution.

iii

iv

Prior to Operation

• Do not turn the power off during program execution or operation .

• Since the computer is made up of precision electronic parts, avoid dropping it

while a program is being executed; otherwise the program execution may be

stopped or the memory contents may be changed .

• When a malfunction occurs, contact the store where the computer was

purchased or a nearby dealer.

• Before seeking service, please read this manual again, check the power supply,

check the program for logic errors, etc .

• Note that the manufacturer assumes no responsibility for any loss or claims

by third parties which may arise through use of this unit.

• Note that the manufacturer assumes no responsibility for any damages

incurred as a result of data/program loss caused by malfunctions, repairs or

battery replacements. Records of important data should be prepared to

protect against such data/program losses.

Contents

CHAPTER 1 General Guide

1-1 Names of Components . 2

1-2 Functions of Components . 3
1-3 Power Supply . 11

1-4 RAM Expansion Pack . 13

CHAPTER 2 Manual Operations

2-1 Let's Operate the Computer . 16

2-2 Begin with the Four Arithmetic Operations 21
2-3 Calculation Notes . 23

2-4 Function Calculations . 24
2-5 Statistical Calculations . 36

CHAPTER 3 Using the "Function Memory"

3-1 Calculations with the Same Formula 44

3-2 Utilization for Preparing Tables 47

CHAPTER 4 Programming with BASIC Language

4-1 Writing Programs 52
4-2 Executing a Program 55
4-3 Variables 57

4-4 Method of Calculating the Program Length 64
4-5 Convenient Techniques 65
4-6 Error Messages and Debugging . 67
4-7 Convenient Peripherals 72
4-8 Using a PB-100 Program . 82

v

Contents

CHAPTER 5 Program Library

5-1 Rearrangement of Data (Sorting) 88
5-2 Horse Race Game 91

CHAPTER 6 Command Reference

6-1 Manual Commands . 99
NEW [ALL] 99
RUN 100

LIST 101
PASS . 103
SAVE [ALL] . 105
LOAD [ALL] . 106
VERIFY.......................... 107
CLEAR 107

6-2 Program Commands . 108
END 108
STOP . 108
[LET] . 109
REM...... 110
INPUT . 111
KEY$. 113
PRINT . 114
CSR . 115
GOTO , 116
ON "' GOTO . 11 7
IF"' THEN . 118
FOR"' TO"' [STEP] NEXT . 119
GOSUB . 121
RETURN 122
ON "' GOSUB . 122

Contents

DATA 123
READ 124

RESTORE 125
PUT 126

GET 128

BEEP 130

DEFM 131
DIM . 133

ERASE 135
MODE 136

STAT CLEAR .. (............................ 137

STAT 137

STAT LIST 138

SET 139

6-3 Character Functions 140

LEN 140

MID$ 141

VAL 142

STR$ 143

6-4 Numeric Functions . 144
SIN, COS, TAN 144

ASN, ACS, ATN 145
HYPSIN, HYPCOS, HYPT AN 146
HYPASN, HYPACS, HYPATN 147
LOG, LN 148

EXP 148
SQR 149

CUR 149

ABS 150
SGN 150

INT 151

vii

viii

Contents

FRAC 152
RND 152

REC · 153
POL 154
FACT 155
NPR 156
NCR 157

6-5 Statistic Functions . 15 8
EOX · 158
EOY 159

6-6 Others . 160
RAN# 160
DEG 161
DMS$ 162
HEX$ 163
&H 164

6-7 DAT A BANK Commands . 166
NEW# 166
LIST# 166
SAVE# 168
LOAD# 169
READ# 170
RESTORE# . 172
WRITE# 174

CHAPTER 7 Convenient DATA BANK Function

7-1 Specifying the MEMO IN Mode 178
7-2 Inputting Data . 179
7-3 Displaying the Data Contents . 182
7-4 Correcting Data . 183

Contents

7-5 Retrieving (Searching) Data 185
7-6 Erasing Data . 191

7-7 Adding and Inserting Data . 192
7-8 Searching Using a Program . 19 5
7-9 Application to Tabular Calculations 197
7-10 Combining with the Function Memory 201

Appendix

Character Code Table . 204
Numeric Functions . 205
Error Messages . 208
Specifications . 211
Index ... 214

ix

To those who have never touched a

computer or are already familiar

with computers, it is recommended

that you first read this chapter care­

fully . The quicker you become

familiar with the configuration of

the computer the quicker you will

be able to use it properly.

2

1·1 Names of Components

5
L

~

1-J

CD @ ® ®® '' r

I T
T 1 l '"2mml!J """ "'G ~ ·i~i'8~ 'l 5 2 D HO• l

=+==+= GOTO CA::; I 0 F'·..'-7~~1P ·+··+· • O" fiiiJ POWER

1' '1 ·-· - ••••

lMODE+~AI ~I~ ~~CMl~Cffl ~G I ~ I G~ l ~oNIPm8oo l~~1NI
ON STOP-

0~. ~ MODE ~
:z: l2J ~ "' [iL, LENO ~ I Fuocti~ Memo'Y I " I U OP

§]~~~~§) §] §12] 0
@] ~ " I-"' --1

~ ~ ctJ ~ ctJ lYJ cm
""'' .O.TN } COG '

(!) ~ ® ~ ~ @. ~
00 [@ [Mi (iJ
S TR$i, ~ ~ ~ READO RESTORE p

1

CD Display window
® Alphabet keys
@ Shift key
® Display contrast
® Function memory keys

® Function key
<J) Numeral keys
® Decimal point key

OJ
~ -
®.
B

@ ·~ ~ EJRECC
~·I ""' - ~ " ~ l±J~, ~ £!) rn ~
~ 00 "'

~ 8c
EXE J

I] HE •• :i.' " -1

I I I 1
®CV® ®

® Exponent key
® Execution key
(jJ) Calculation command keys
© Connector for peripherals
@ Power switch
®Mode key

® Memo/search key

1·2 Functions of Components

• Power Switch

When this switch is moved to the right, the power is turned on, and when it is

moved to the left, the power is turned off.

• Shift Key (Red (]] Key)

If this key is pressed, the shift mode is selected (" (]] " is displayed) and the

command or symbol printed above each key can be displayed. When it is pressed

again, the shift mode is released and "(]] " disappears. (To distinguish this key

from the alphabetical (]] key, it will be written as ~ from now on in this

manual.)

• Function Key (Blue[[) Key)

If this key is pressed, the function mode is selected (" [[) " is displayed) and the

function printed below each key can be displayed. When it is pressed again, the

function mode is released and " [[) " disappears: (To distinguish this key from

the alphabetical[[) key, it will be written as~ from now on in this manual.)

• Numeral Keys, Decimal Point Key, Calculation Keys,

and Execution Key

Examine this key array carefully. It is the same. as that of

an ordinary calculator, isn't it? This part is used when the

four arithmetic calculations (addition, subtraction, multi­

plication, division) are performed. However, the following

differences exist. The 00 (multiplication) and GJ (division)

keys are different and there is no El key while there is an

CZJ

[Z) [al~ 00

~~~El 

8 (execution) key. This occurs because a computer uses an [1J ~ ~ [±] 
* (asterisk) for X and/ (slash) for 7, while the answer is -1'- 4 

obtained by the 8 key instead of the El key. ~ GJ I EXE I 

3 



4 

CHAPTER 1 General Guide 

For example, an operation is performed by an ordinary calculator as 12 00 4 

G:l 3 (±) 7 El 5 El while this computer uses 12 [I) 4 0 3 (±) 7 El 5 ~ . < 

This computer can be used as an ordinary calculator as 

shown above. When followed by the~ key, one of the 

numeral keys ( ~ to ~ ) can be used to specify a program 

area from PO to P9 while the 8 key is used for power 

calculation (xY -+ xty) and the (±) El [I) 0 keys are 

used to enter relational operators(~,~'>,<). 

• Alphabetical Keys, Space Key 

P7 
c=i 

P4 
c=i 

P1 
c=i 

P0 
c=i 

PB 
c=i 

P5 
c=i 

P2 
c=i 

"' c::J 

c::J 

pg > 
c=i c::J 

P6 ::5 
c=i c::J 

P3 >-
c=i E:J 

..... 
EXE 

Using these keys, commands are entered, or programs are written. Each of the 

26 alphabetical keys from [Al to rn functions as a memory (for storage loca­

tions). 

Also, the [Al ~ a::J keys have another function. When they are pressed after the 

~key, a symbol or BASIC command is displayed. 

Press the space key ( 8 ) when a space is required. 

Example: ~[Al-+ GOSUB, ~[]]-+ ? 

I 

**' 
$ ( ) ? . " c::J c::J c::J c::J c::J c::J c::J c::J c::J c::J 

GOSUB RETURN GOTO FOR TO NEXT IF THEN LIST ANS 
c::J c::J c::J c::J c::J c::J c::J c::J c::J c::J 

PRINT INPUT CLEAR DIM LOAD SAVE STAT ~ ~ 7r 
c::J c::J c::J c::J c::J c::J c::J c::J c=i 



1-2 Functions of Components 

In addition, the alphabetical keys have another use in the extension mode (When 

0 is pressed, "EXT" is displayed). When they are directly pressed, small alpha­

betical characters are displayed, and when they are pressed after the~ key, 

special symbols are displayed. 

Extension mode functions: 

~~00lIJ[YJ~[IJ[QJ@] 

0 0 @] [IJ []] lliJ OJ lliJ [IJ GJ 

00~0lliJC6:J§J§JEJOO 

Functions provided when a key is pressed after the ~ key in the extension 

mode: 

c=i c=i c=i c=i c=i c=i c=i c=i c=i c=i 
% ' @ ¥ [ J & l 

c=i c=i c=i c=i c=i c=i c=i c=i c=i c=i 
0 0 6 x • • • • 

c=i c=i c=i c=i c=i c=i c=i §] c=i c=i 

• }; Q µ r '1 

To release the extension mode, press 0 again. 

This computer is provided with the~ key. When a key is pressed after~ key, 

one of the following functions is diaplayed. 

Example: [§[QJ -+SIN 

c=i c=i c=i c=i c=i c=i c=i c=i c=i c=i 
SIN cos TAN ASN ACS ATN LOG LN EXP SQR 

c=i c=i c=i c=i c=i c=i c=i c=i c=i c=i 
HYP ABS INT FRAC SGN RANI! SET AND( DEG( OMS$( 

c=i c=i c=i c=i c=i c=i c=i §] c=i c=i 
VALi STA$( LEN( MID$( DATA READ RESTORE SPC &H HEX$( 

In the extension mode, capital alphabetical characters are displayed. 

5 



6 

CHAPTER 1 General Guide 

• Equal key ( ~ ) 

This key is not used to provide an answer for calculation, but is used for an 

assignment statement (see page 109) and for a condition in an IF statement 

(see page 118). 

Also, when this key is pressed after the~ key, a~ (not equal) symbol is dis­

played. 

• Exponent/Pi Key ( 00 ) 
When this key is directly pressed, it is used to provide an exponent. For example, 

operate [IJ 8 (gJ ~ 00@ for 1.23 X 104 . When an exponent is a negative 

number, press the El key after this key. For example, operate [2)8@ITJOOB~ 

for 7.41 X 10-9. 

When this key is pressed after the~ key, Pi (the ratio of the circumference of a 

circle to its diameter) is displayed. 

• Answer Key ( ~ ) 

When this key is pressed after the~ key, the result of manual or program cal­

culation executed immediately before is displayed. 

• Function Memory Keys ( [@[§)§]) 
These keys are for the Function Memory. They will be described in detail in 

Chapter 3. 

• Cursor Movement Keys ( ~~) 

These keys are used when correcting displayed characters. The cursor("-" blink­

ing in the display window) is moved right and left by these keys. Each time this 

key is pressed, the cursor moves by one character. When the key is held down, 

the cursor moves continuously through all of the characters present. When 

§!!]~is pressed, the cursor moves to the left edge of the display (the beginning 

of the line) - LINE TOP function. When §!!]~is pressed, the cursor moves to 

the right of the last input character (the end of the line) - LINE END function. 



1-2 Functions of Components 

• Memo Key(~) 

Pressed to use the Data Bank function . Also pressed for sequential recall or for 

recall after pressing a specified character in the RUN mode (press ~~) or in 

the input mode (press~§)). 

• All Clear Key ( ~ ) 

This key erases any display. Also, it is pressed when an error occurs, or when the 

display blanks out by auto power off (see page 12). When a program is being 

executed, program execution is suspended by pressing this key . 

• Delete/Insert Key ( ~ ) 

This key is used to delete a character where the blinking cursor is positioned. 

After deletion, the character to the right of the cursor moves to the left. When it 

is pressed after the 8 key, the character where the blinking cursor is positioned 

is moved to the right to provide a space . 

• Engineering/Stop Key ( 5f~t) 
When this key is pressed, a calculation result or a numeric value displayed by a 

PRINT statement is converted into an exponent display. When this key is 

pressed repeatedly , the displayed exponent will decrease by 3 each time. The 

exponent can be increased by 3 each time by pressing 86 . 
When pressed during program execution, this temporarily suspends program 

execution. When it is pressed while characters are being scrolled, the display is 

temporarily suspended. Execution is resumed when the §1 key is pressed. 

7 



8 

CHAPTER 1 General Guide 

• Mode Key ( ~ ) 

When specifying a computer mode or an angle unit, use this key in combination 

with GJ, ~-~. 
~GJ· · · · · · This turns the key input buzzer sound on and off. When the 

buzzer is on, the "BUZZER" symbol lights up on the display. 

~~· ···· · The "RUN" symbol is displayed for manual and program calcula­

tions. (RUN mode) 

~CTI ·· · · · · The "WRT" symbol is displayed for program writing, checking 

and editing. (WRT mode) 

~~· · · · · · The "TRACE ON" symbol is displayed for execution of tracing. 

(For details, see page 71.) 

~~· · · · · · When the "TRACE ON" symbol is displayed, the execution trace 

mode is canceled and "TRACE ON" disappears. 

~~· · ·· · · The "DEG" symbol is displayed specifying "degrees" as the angle 

unit. 

~§· · ·· · · The "RAD" symbol is displayed specifying "radians" as the angle 

unit. 

~(§]· ·· · ·· The "GRA" symbol is displayed specifying "grads" as the angle 

unit. 

~CZI · · · · · · The "PRT ON" symbol is displayed and printer output is possible 

when a printer is connected to the computer. 

~[§)· · · · · · When "PRT ON" is displayed, the printer output mode is can­

celed and "PRT ON" disappears. 

~~ ·· ····The "~8" symbols light up to indicate that the MEMO IN 

mode is specified. This mode permits memo data input to the 

DATA BANK. (For details , see Chapter 7.) To cancel this mode, 

press ~~ . 



1-2 Functions of Components 

• Display Contrast Control 

When the display is dark or faint, depending on the battery condition or display 

view angle, adjust it by moving the control located on the left side of the 
computer. 

To increase the display contrast, turn the control in the direction indicated by 

the arrow. To weaken the contrast, turn it in the opposite direction. If the con­

trast is still weak even after the control is at its highest-contrast position, the 

batteries have probably run down. If so, replace the batteries as soon as possible. 

(For battery replacement, see page 11.) 

• Connector for Peripherals 

Use this connector (I/O port) for connecting to optionally available peripherals. 

When a printer is to be used, connect on the FP- l 2S printer or SB-42 interface 

pack (for connecting the computer and FP-40). When a tape recorder is to be 

used, connect it with the cassette interface F A-3 or F A-5 . 

f i aannnonnnnnn ?i I 

Do not insert anything except the FP-12S, SB-42, FA-3 or FA-5 . When any 

options are not used, always cover the connector with the connector cover 

supplied. 

9 



10 

CHAPTER 1 General Guide 

• ALL RESET Button 
This button is located on the back of the unit. If this button is pushed with a 
pointed object when the power is on, the computer will be reset to the state 

where no specification or no input is performed. This operation may be used 

when the computer is in locked state due to strong static electricity. Caution is 

required since all programs and data will be lost if pushed. 

0 

D 

0 

ALL RESET . 
T 

ALL RESET Button 



1-3 Power Supply 

The power supply system for the computer is divided into the main power 

supply (two CR2032 lithium batteries) and an auxiliary power supply for 

memory backup (one CR1220 lithium battery). If the display contrast remains 

weak even after adjustment (see page 9), replace the batteries as soon as possible 

because they are becoming exhausted. 

Note: 

Be sure to replace the batteries every two years regardless of their use in order to 

prevent the chance of malfunction due to battery leakage. 

• Battery Replacement 

I) Switch off the power supply and remove 
the rear panel after removing the two 

screws. 

2) Remove the batteries. 

Main batteries: 

Remove the battery cover after loosening 

the screw®. 

Auxiliary battery : 

Remove the battery cover after loosening 

the screw@. 

3) Remove the exhausted batteries. (They can 

be removed easily by tapping the battery 

compartment with its opening facing 

downward.) 

4) Wipe the surfaces of new batteries well 

with a dry cloth before inserting them with 

the EB side up. 

D 
Screw@ 

Screw® 

0 DJ moo w 0 0 

.J 

5) Press the batteries down with the battery cover and slide the cover to close 

the battery compartment. 

6) Replace the screws on the rear panel and switch on the power supply. 

11 



12 

CHAPTER 1 General Guide 

• Auxiliary Batteries 

The auxiliary battery is for memory backup. This battery remains in operation 

while the main battery is being replaced, thus preventing the program and data 

from vanishing. 

Bear in mind that if both the main and auxiliary batteries are removed at the 

same time, the program and data will vanish. If the main and auxiliary batteries 

must be replaced at the same time, press the ALL RESET button with a pointed 

object after switching on main frame power supply. 

Notes: 

l. Frequent use of the buzzer shortens battery life. 

2. When replacing the main batteries, be sure to replace both at the same time. 

3. Never throw batteries into a fire. It will be dangerous as they may burst. 

4 . Care should be taken to ensure that battery polarity( ill , 8 ) is correct. 

Keep batteries out of reach of children. If swallowed by accident, consult a 

doctor immediately. 

• Auto Power Off 

This is an automatic power-saving function designed to prevent waste of power 

when a user forgets to switch off the power supply. The power supply is auto­

matically cut off in 6 minutes upon completion of operation (except during 

program execution) or upon key-input waiting state following execution of an 

INPUT or PRINT statement. 

In such a case, power supply can be resumed by turning the power switch off 

and then on again or by pressing the~ key. 

Note: 

Even when the power supply is cut off, variable content, program content and 

DATA BANK content will be retained but mode specifications ("WRT", 

"TRACE ON'', "PRT ON", etc.) will be initialized (immediately after turning 

the power on). 



1-4 RAM Expansion Pack 

The standard free area (area where programs and data can be written) has 

7520 bytes and 26 variables, but it can be expanded to a maximum of 15712 

bytes by installing the optionally available RP-8 RAM pack. 

The expanded area can be used in entirely the same way as the standard area. 

• How to Install the RAM Pack 

< Preparations > 
In view of the possibility that the internal circuitry of the RAM pack might be 

destroyed by static electricity, touch a metallic substance like a door knob to 

discharge the static electricity accumulated in your body before you handle 
the pack. 

< Procedure > 
1) Switch off the power supply. (Power 

switch--* OFF) 

2) Loosen the two screws provided on 
the rear panel of the main frame and 

remove the panel. 

3) Insert the RAM pack into its compart­

ment and tighten the three screws. 

*Never touch the connector portion 

of the RAM pack or the PCB pad 

portion of the computer body. 

4) Tighten the screws on the rear panel. 

Socket 

PCB pad 

5) Switch on the power supply and press the ALL RESET button with a pointed 

object. 

13 



14 

CHAPTER 1 General Guide 

• After installing or removing the RAM pack, be sure to press the ALL 

RESET button with a pointed object. If the ALL RESET button is not 

pressed, the memory contents may be changed or a meaningless display 

may be shown. 

• Use care not to allow the connector portion of the pack or the PCB pad 

portion of the computer body to become dusty or dirty, and avoid getting 

fingerprints on them as this will cause poor contact. 

• Be sure to place the removed pack in its case and store in a location where 

it is not subject to dust or dirt. 

f 



· One must at··Ieast operate the com­

puter to become familiar with the 

unit. Even if you operate some­

thing wrong, the machine will not 

be broken. Since practice makes 

perfect, as the proverb says, begin 

practising simple operations. 



16 

2-1 Let's Operate the Computer 

Try the computer and see how it works. 

First slide the power switch to ON, and the following display will appear. 

[ ;:~ ' ""' ~ 
-r:: e .3 (j y p e 

First erase this display. To do so, press the ~key. "Ready PO" will vanish. Then 

"....:' will begin blinking at the left end. This is called the "cursor" and indicates 

the starting point for character writing. 

RUN DEG l 
The state in which this cursor is blinking is called "key-input waiting state", -

namely, the blinking cursor indicates that the computer is waiting for a calcula­

tion or a command. The cursor is usually indicated by a blinking "_.!', but as 

characters are written continuously, it sometimes changes to a blinking " I ". 
On this computer one line consists of up to 62 characters. The " I " symbol 

appears as a warning signal when the number of written characters exceeds 5 5. 

"BUZZER", "RUN" and "DEG" will probably appear at the top of the display. 

These are called mode displays and indicate the state of the computer. "RUN" 

indicates the RUN mode in which manual calculations and program execution 

can be performed. "BUZZER" shows that the buzzer is on. The buzzer br-eps at 

each key input. "DEG" shows that the angle unit is the degree. In addition, 

other angle units are the radians ("RAD" lights up), which is specified by press­

ing ~~ , and the grads ("GRA" lights up) specified by pressing ~[§] . Be 

careful about these angle units when handling a trigonometric function, inverse 

trigonometric function or coordinate transformation. Once an angle unit is 
specified, H remains in effect even when power is switched off. 

The other modes displayed are the program writing mode ("WRT" lights up) 

specified by pressing ~IIJ , the trace mode ("TRACE ON" lights up, see page 



2-1 Let's Operate the Computer 

71) specified by pressing ~~ , the printer output mode ("PRT ON" lights up, 

see page 80) specified by pressing ~(ZJ, the MEMO IN mode for the DATA 
BANK function ("~ ~" light up) specified by pressing~~ and the ex­

tension mode ("EXT" lights up) specified by pressing~ . 

You will learn these as you become familiar with the computer. 

Now actually press the keys to display the modes. If a confusion has arisen in 

mode display, switch the power supply off and then on again. 

First try a simple calculation. 

Example: 

1 2 3 +4 5 6 =5 7 9 

Press~ . 

Press keys according to the above equation. 

1.-,.,. +4c::- .-
,.:: . .:.1 ._It•_ 

Then press~ instead of El to find the answer . 

The calculation is as simple as with an ordinary calculator, isn't it? 

Now make a calculation including both multiplication and addition. 

Example: 

33 x 5 + 16=1 81 

Here it is assumed that 34 has been input by mistake instead of 33 . 

I ~4=+= c::- + 1.::: ._1 •• _I. 1_1_ 

17 



18 

CHAPTER 2 Manual Operations 

You notice the mistake, but don't worry. Press the cursor movement key (El) 

and bring the cursor to the wrong numeral. 

EJEJEJEJEJEJ 
'--The cursor and 4 blink by turns. 

Then press the right key~ . 

Now the calculation formula has been corrected. Find the answer. 

I 1::: 1 

As shown above, when a mistake is noticed during the input process, it can be 

easily corrected by using the cursor movement keys. However, when a mistake is 

noticed after the~ key has been pressed, start the calculation again from the 

beginning. 

Now write characters using the alphabet keys. 

These keys are arranged in the same manner as on typewriters (ASCII arrange­

ment). 

First write capitals. 

Example: Input A, B, C, X, Y and Z. 

First input A, Band C. 

IPEC_ 

Then input X, Y and Z. 



2-1 Let's Operate the Computer 

Next, insert a one-character space between ABC and XYZ. Bring the cursor to 

the position of X. 

BBB I H- E' r ':.:' u 7 I-·:: I&.... 
I 

Make a one-character space. The cursor and X blink by turns. 

I H- E' ,-. ':·:' J..I 7 
I -·-11 I&.... 

To insert a space between characters in this manner, place the cursor where the 

space is to be inserted and press§~ . When desiring to insert some spaces, 

keep this key pressed after the§ key. 
This computer is capable of displaying small letters and special characters in 

addition to numerals and capitals. For displaying these characters, use the exten­

sion mode. See page 5. 

Example: 

Display the small letters a, band c. 

First specify the extension mode. r= EXT lights up. 

[ -

BUZZER EXT RUN DEG 

0 -

Then input A, Band C. 

RUN DEG 

Example: 

Display the marks if If;• f . 
Since the computer is already in the extension mode, just press each of the 

relevant key after pressing the§ key. 

19 



20 

CHAPTER 2 Manual Operations 

Example: 

Display the symbols Z ~~ ~" . 
Press keys as shown below in the extension mode: 

BUZZER EXT RUN DEG 

Since the above marks and symbols are available, they may be used for various 

purposes. To cancel the extension mode, press 0 again and the "EXT" symbol 

disappears. 

Now we believe you understand key operations. While you are practicing key 

operation, "Error 2" may be displayed and the pressed key locked. This is not 

a trouble but a message that the wrong operation has been performed. It is there­

fore called the "error message." In such a case, press the~ key. Then the error 

message will disappear and the computer will become operable again. There are 

several kinds of such error messages. For details, see page 68. 



2·2 Begin with the Four Arithmetic Operations 

Try simple calculations. Bear in mind that there is a priority sequence in opera­

tion , i.e., multiplication and division take precedence over addition and sub­

traction. 

Example 1: 
23+4 . 5-53= - 25 . 5 

Operation 

~~C±J@8[§]EJ[§]~~ I .-, c:- c:­
- L ·-' •. _I 

*From here on, numerals will be no longer placed in boxes. 

Example 2: 

56 X ( - I 2) -;- ( - 2. 5) = 268 . 8 

Operation 

5 6 OOG 1 2 08 2 • 5 ~ 

*In the case of a negative numeral, press the El key before pressing the numeral 

key. 

Example 3: 
7 x 8 - 4 x 5 = 36 

Operation 

700884005~ 
I "T •• .)tr 

*Multiplications are executed first, followed by subtraction. 

Example 4: 
( 4 . 5 X I 075 ) X ( - 2 . 3 X I o-7s ) = - 0. 0 I 035 

Operation 

4 • 5 00 7 5 OOG 2 • 3 OOG 7 8 ~ i~--~_3 _. _0_1_0_.3_~_, ____ _ 

*For exponent display, input an exponent after pressing the [!]key. 

21 



22 

CHAPTER 2 Manual Operations 

In addition to the calculations as shown above, algebraic calculations using varia­

bles are possible with this computer. These calculations are convenient when a 

certain value is used repeatedly. 

For example: 

3x+5= 
4x+6= 

5x+7= 

If the value of x in the above calculations is 123.456, it is troublesome to press 

the same numeral keys repeatedly. A labor-saving method for such calculations 

is algebraic calculation using a variable. Use variable X. 

First assign 123 .456 to the variable X. 

CKJ@) 1 2 3 • 4 5 6 ~ 

Where@) does not mean "equal," but "assignment of the right side to the left 

side." Now start calculation . 

300CKIGJ 5 ~ 
400CKIGJ 6 ~ 
5 OOCKIGJ 7 ~ 

375 ~ .36B 

Repetitive calculations can be made as simple as this when a variable is used . 

This computer has 26 variables from A to Z, which makes possible storage of 

numerous values. 

In the above example , the value of the variable X is constant while calculation 
I 

formulas differ. 

Please note~ in a calculation where formulas are constant and the value of the 

variable differs the computer works in a different way. For example , in a calcula­

tion of a formula 3 x + 5 =where x varies from 123 to 456 to 789 the computer 

uses a function to store numeric expressions (calculation formulas). This will be 

described in Chapter 3. 



2·3 Calculation Notes 

• Priority Sequence in Calculation 

As mentioned in the preceding section, calculations are subject to the rule of 

"priority sequence" (true algebraic logic) which requires that multiplication and 

division take precedence over addition and subtraction. This computer auto­

matically judges the priority sequence. You simply input a numeric expression 

and the correct answer will be displayed. 

Here is the priority sequence in a calculation: 

1) Functions (sin, cos, tan, etc.) 

2) Power (t) 
3) Multiplication(*), division(/) 

4) Addition ( + ), subtraction (-) 

Calculations are performed according to this priority sequence. When calcula­

tions happen to be equal in the priority sequence, priority is given to the calcula­

tion on the left. If there are parentheses, top priority should be given to the 

parenthesized calculation. 

Example: 2+3*SIN(17+13) t2 
L__CD__J 

~-@__J 

~---®---~ 

~----© ----~ 

~-----®----~ 

2.75 

• Number of Input/Output Digits and Calculation Digits 

The range of input values (number of input digits) acceptable to this computer 

is 12 digits for a mantissa and 2 digits for an exponent. The same number of 

digits apply to internal calculations. 

The displayed range of a value (number -of output digits) is 10 digits for a 

mantissa and 2 digits for an exponent. 

Example: 

182345678912~ 1.234567891 
1 2 3 4 5 6 7 8 9 t2 (I) 1 0 0 ~ 1 I 2 .3 4 5 6 7 ::: 9 1 E 1 2 
1234567891200-100~ -1.234567S91E12 

23 



24 

2-4 Function Calculations 

This computer is capable of performing function calculations in addition to the 

four arithmetic operations. 

The functions can be used in a program, but manual operation is described here. 

This computer is provided with the following functions: 

Name of Format Function and input range function 

Trigonometric SIN (Numeric sin IXI < 1440° (811 rad, 1600gra) 

function expression) 

* hereafter X 

COS (X) cos IXI < 1440° (811 rad, 1600gra) 

TAN (X) tan IXI < 1440° (811 rad, 1600gra) 

except when IXI is odd multiple of 

90°(11/2 rad, lOOgra) 

Inverse ASN (X) sin-1 IXI ::£ 1, -90° ::£ ASN ~ 90° 

trigonometric (rad: -rr/2 ~ ASN ~ rr/2, 

function gra: -100 ::£ ASN ~ 100) 

ACS (X) cos-1 IXI ~ 1, 0° ~ACS ~ 180° 

(rad: 0 ~ACS~ 11, gra: 0 ~ACS~ 200) 

ATN (X) tan -1 -90° :;:; ATN:;:; 90° 
- -

(rad: -rr/2 ::£ ATN ~ rr/2 , 

gra: -100 ~ ATN ~ 100) 

Hyperbolic HYP SIN (X) sinh I X'~ 230.2585092 

function HYP COS (X) co sh IXI ~ 230.2585092 

HYP TAN (X) tanh IXI < 10100 

Inverse HYP ASN (X) sinh-1 IXI < 5 X 1099 

hyperbolic HYP ACS (X) cosh- 1 1:;:; x < 5 x 1099 

function HYP ATN (X) tanh- 1 IXI < 1 

Square root SQR (X) .JX x~o 

Cube root CUR (X) vx IXI < 10 1 00 

Power XtX xY x < 0-+ y: natural number 

Exponential EXP (X) ex -10100 < x ~ 230.2585092 

fonction 



2-4 Function Calculations 

Name of Format Function and input range function 

Common LOG (X) log10x X>O 
logarithm 

Natural LN (X) logex X>O 
logarithm 

Integer INT (X) [x] Gives maximum integer not exceeding 

X (equal to Gaussian function [ x]) 

Fraction FRAC (X) FRAC Gives decimal portion of X 

Absolute ABS (X) lxl Gives absolute value of X 

value 

Sign SGN (X) sgn x 1whenX>0 

0 when X = 0 

-1whenX < 0 

Rounding off RND (X, Number RND( Gives the value of X which is rounded 

of digits)* off at the specified digit. 

I I Number of digitsl < 100 

Random RAN# RAN# Generates a 10-digit random number. 

numbers 0 <RAN# < 1 

1f 1f 1f Gives approximate value of ratio of circle 

circumference to diameter. 

Decimal-+ DMS$ (X)* DMS$ ( Converts decimal number given as 

sexagesimal X into sexagesimal character string 

conversion in degrees, minutes and seconds. 

IXI < 105 

Sexagesimal -+ DEG (deg. [, min. DEG( DEG (x, y, z ) = x + y/60 + z/3600. 

decimal [,sec.]])* IDEG (x, y, z)I < 10 ' 00 

conversion 

Decimal-+ HEX$ (X)* HEX$( Converts value of X into 4-digit 
hexadecimal hexadecimal character string. 

conversion -32769 < x < 65536 

25 



26 

CHAPTER 2 Manual Operations 

Name of Format Function and input range function 

Hexadecimal &H Hexadecimal &Hx Character string contains hexadecimal 

._..decimal character string number within 4 characters . 

conversion 

Factorial FACT (X) x! 0 ;::; X ;::; 69 (0 and positive integer) 

Permutation NPR (n, r)* nPr 0;::; r;::; n < 10' 0 

(0 and positive integer) 

Combination NCR (n, r)* nCr O;:;;r;:;;n < 10' 0 

(0 and positive integer) 

Rectangular POL (X, Y)* POL( IXI < 10' 00 , IYI < 10 100 , IXI + IY I * 0 
._..polar X, Y: numeric r is given as a function value for assign-

coordinate expressions ment to variable X while value of !J is 

transformation assigned to variable Y. 

Polar- REC (r, !J)* REC ( 0;:;; r < 10' 00 , 161 < 1440° (87T rad, 

rectangular r, !J : numeric 1600 gra) 

coordinate expressions Gives x as a function value for assign-

transformation ment to variable X while value of y is 

assigned to variable Y . 

Note : 
In the case of asterisked functions, parameters must be parenthesized . 

*Certain combinations or permutations may cause errors due to overflow 

during internal calculations. 



2-4 Function Calculations 

Now perform calculations by using functions. Frequently used functions can be 

input at one touch of the respective function keys. 

• Trigonometric Functions (sin, cos, tan) and Inverse Trigonometric Functions 
(sin-1 , cos-1 , tan- 1 ) 

When using these functions, be sure to specify the angle unit (degrees, radians, 

grads). 

Example: 

sin 12.3456° = 0.2138079201 

Operation: 

§!)@ (Angle unit: degrees (DEG)) 

~~ 12.3456~ 

Example: 

I ~1 ·7,·1 .~:=:~71'o:::i·7.·~11 _ ...... ___ J ..... _ 

2 • sin 45 • X cos 65. 1 • 0.5954345575 

Operation: 

200~~4 500~~6 5 . 1 ~ 

Example: 

sin- 1 0.5 = 30° 

Operation: 

1 ·-1 c:qc:4-:r4c:c:-:ic: 
•.:. • ·-' .· ·-' ._;, ·-' ·-' I ·-' 

~'iiil 0 • 5 ~ LI _3_C_1 _________ _ 

Example: 

cos(; rad) = 0.5 

Operation: 
§!][§] (Angle unit: radians (RAD)) 

27 



28 

CHAPTER 2 Manual Operations 

Example: 

cos- 1 Jf- 0. 7853981634 rad 

Operation: 

Example: 

tan(-35gra) = -0.6128007881 

~(§) (Angle unit: grads (GRA)) 

8f,ii;EJ3 5§) ~t-.:. II t· ..::.1:1to.:. 1-.:. I 1:1 1:1 I ·-1 ·• 1 .-.. -. ·-1 ,-1 , .-•• -. 1 

• Hyperbolic Functions (sinh, cosh, tanh) and Inverse Hyperbolic Functions 
(sinh-1 , cosh-1 , tanh-1 ) 

In the case of these functions, press 8~ and then press the same keys as in the 

case of trigonometric and inverse trigonometric functions. 

Example: 

sinh(-1) = -2.301298902 

Operation: 
~~~~~c:SEl~602~ci~ 

Example:

cosh- 1 1 . 5 = 0. 9624236501

Operation:

I - ·~· ' i:-1 1 ·~· ·::i Co q i:-1 ·~· .._a ·-' fo_ "- .. • '-' .. • ,._ ,,_

I '71 ·::i .• ·-:·4 ·-:•":!' .• c::' '." 1
'- a •• t• .:.. .:.. ·-' t• ._I f_1

• Logarithmic Functions (log, In), Exponential Function (ex) and Power Func­
tion (x")

Example:

logf .23 = log,, 1.23 = 0.08990511144

Operation:

8~ 1 • 2 3§) Io. 0:::99os11144

Example:

ln90 = log. 90 = 4. 49980967

Operation:

Example:

e5 = 148.4131591
Operation:

Example:

1232 = 15129
Operation:

123~c!:,2~

Example:
1233 = 1860867

Operation:

123~c!:i3~

Example:
101. 23 = 16. 98243652

Operation:

1 0 ~c!:i 1 • 2 3 ~

Example:

5.62· 3 = 52.58143837

Operation:

5 • 6 ~c!:i 2 • 3 ~

Example:

123 t = 7Jf23 = 1 . 988647795

Operation:

2-4 Function Calculations

I 4 4q·::i·:·.-:1·::ii=='
II -· -· ,_. ,._ -· -· I

I 148.41.31591

15129

16. •3:::243652

1. '3BB64 7795

29

30

CHAPTER 2 Manual Operations

• Other Functions (v,v, SGN, RAN#, RND, ABS, INT, FRAC)

Example:

FT + rs = 3 .65028154
Operation:

Example:

Y27= 3

Operation:

[g[[)IKJ 2 7 ~

Example:

I 7 .- c,-1.-,,-, 1 c4 .,.:1 11 tr ._Jr,:..::, 1:1 ._!

"":!"
·-'

Conversion into signs (positive number-+ 1, negative number-+ -1, 0-+ 0)

Operation:

8fcifl0~

8fcif!El2~

Example:

Generation of random numbers (0 <RAN#< 1 pseudorandom number)

Operation:

Example:
(This value is not necessarily displayed.)

Round the result of 12.3 x 4.56 at the place of 10-2 .

12 . 3 x 4 . 56 = 56 . 088

Operation:
8\iiii?i 1 2 • 3 rn 4 • 5 B GJEJ 2 I 56. 1

Example:

\-78.9 -:- 5.6\ = 14.08928571

Operation:
8~~c:SEJ 7 8. 90 5 . 6 I 14 •71·=·.::i·~··=·J:".., 1 I t. 1_1 - · ,_ . ·-· I

2-4 Function Calculations

Example:

The integer portion of 7800 7 96 is 81.

Operation.

~'iiif~6 7 s 0 009 6 ~6~ I ::: 1
~~~~~~~~~~~~ 

*INT x gives an integer not exceeding x. 

Example: 

The decimal portion of 7800 7 96 is 0.25 . 

Operation: 

~iii?c~6 7 8 0 009 6 ~6~ i.:1 I ..::. ._! 
I - .-, c:-

• Decimal-Sexagesimal Conversion (DEG, DMS$) 

Example: 
14° 25' 36" = 14. 42666667' 

Operation: 

Example: 

12.3456° 

Operation: 

12° 20' 44. 16" 

~~I 1 2 o 3 4 5 6 ~6 ~ 

Example: 
sin 63° 52' 4 r 0.897859012 

Operation: 

/ 14. 42666667 

I 171 .:.q-:i.:.c:-q,:-11 .~. 
~- = ,_, •• I 1_1 ._1 _. ~- ..... 

31 



32 

CHAPTER 2 Manual Operations 

• Decimal-Hexadecimal Conversion (&H, HEX$) 

*A, B, C, D, E and Fin hexadecimal numbers correspond to 10 ~ 15 in decimal 

numbers. 

Example: 

Convert a hexadecimal number into a decimal number. 

Operation: 

~'iii'10~ 

~'iii'7 FF F~ 

~'iii' 8000~ 

~'iii'F FF F~ 

Example: 

16 
32767 
-3276::: 
-1 

Convert a decimal number into a hexadecimal number. 

Operation: 

~:iili\ 100~6~ 

~:iili\1000~6~ 

~:iili:El3 2 7 6 8~6~ 

~:iili\32 76 7~6~ 

~:iili\ 65535~6~ 

0064 
[1 .3ES 

7FFF 
r r Fr-

• Factorial, Permutation and Combination (FACT, NPR and NCR) 

Example: 

10 ! = 3628800 

Operation: 

CIJIKJ©ITJ 1 0~ 

Example: 

ioP4 = 5040 

Operation: 

l5040 



Example: 

10C4 = 210 

Operation: 

~91084~6~ 

2-4 Function Calculations 

210 

• Rectangular-Polar Coordinate Transformation (REC, POL) 

Here e of polar coordinates (r, 8) is assumed to be obtained in radians. 

Example: 

The point (5, rr/6) in the polar coordinate is (4.330127019, 2.5) in the rec­
tangular coordinate. 

Operation: 

~§ (Angle unit : radians) 

~~58~606~6~ 

[Y)~ 

Example: 

(x) 

(y) 

4=33012([ii9 
.-, == 
L. = ._! 

The point (1 , 1) in the rectangular coordinate is (1.414213562, 0 .7853981634) 

in the polar coordinate . 

Operation: 

~~181~6~ 

[Y)~ 

(r) 

(O) 

1=41 4213562 

* In these functions, results are assigned to variables X and Y. Output values are 

the same as the content of variable X. 

* In these functions , angle unit specification is as important as in the case of 

trigonometric or inverse trigonometric functions. 

33 



34 

CHAPTER 2 Manual Operations 

• Specifying the Number of Significant Digits and the Number of Decimal 
Places 

"SET" is used for these specifications. 

Specification of number of significant digits SET En (n = 0 ~ 9) 

Specification of number of decimal places . . . . . SET Fn (n = 0 ~ 9) 

Release of specification . . . . . . . . . . . . . . . . . SET N 

*"SET EO" used to specify the number of significant digits specifies lO digits. 

*When a specification is made, the result is displayed by the number of specified 

digits. (The digit next to the last specified digit is rounded off.) The original 

value remains in the computer. 

Example: 

100 

Operation: 

6 16 . 66666666· .. 

~'ITT!Il4§E (Specified number of significant digits : 4) 
~~~~~~~~~~-

, 0 0 0 6 §E ITL__1 c:._. _c:c6__:_t _• , _. E_~_J _1 _ ____ _

Example:
123

Operation:

7 = 17 .57142857·· ·

~mW 2 §E (Specified number of decimal places : 2)

12307§E 11' c--;
~-' -· -~-''--------

Example:

1 + 3 = 0.333333333···

Operation:

~'ITTCRJ§E (Specification released.)

103§E ~ "':!'"'=!'"':!'1'1'"':!'"':~"r'7"':!'
... ·-' ·-· ·-' ·-· ·-· ·-· ·-· ._1 ._1 ._1

• Engineering

Example:

42. 195km X 3 = 126. 585km

Operation:

42.1950038

Example:

78g x 96 7 488g = 7. 488kg

Operation:

78[!)968

2-4 Function Calculations

126585m

126::5B5

35

36

2-5 Statistical Calculations

When collected data are analyzed, or when new data are obtained through fore­

casts or estimates, statistical calculation is indispensable, whether in office or

technical work. This computer incorporating statistical calculation functions

enables you to perform troublesome statistical calculations simply. Correlation

coefficients or estimated values can be quickly obtained .

• Statistical Data Input

Prior to start of a statistical calculation, clear the exclusive statistical memories

by pressing~~~~ 8.

And input a statistical data as shown below in the RUN mode .

One-variable data

{ Individual data ~ ~ data§]

Plural identical data ~ ~ data~ d::, frequency§]

Paired-variable data

{ Individual data ~ ~ x data GJ y data 8

Plur~_identical data ~ ~ x data GJ y data~ 6
frequency§)

Here is an example of a stitistical data input.

Input data
x 1 3 5 5 3 3 3

y 2 4 4 6 3 ,3 3

Operation:

8[Q] (RUN mode)

~~ ~~ (Statistical memories
~ cleared.)

~~1G]2

8
Slfil 1 ~2 -

2-5 Statistical Calculations

*1. y data can be omitted by using"§§)~ x data (§§16 frequency)~" . In

such a case y's values are the same as the previous ones. ([§§1 6 frequency]

can be omitted.)

* Data x cannot be omitted.

* Input statistical data are stored even after power is off unless the STAT

CLEAR command is executed by pressing§§)~§§)~~ · Therefore, when

inputting new statistical data, be sure to execute the ST AT CLEAR command

before input and after statistical calculations so as to clear statistical memo­

ries.

* When " frequency" is omitted, frequency is regarded as 1.

* Key input during statistical calculations is limited to 23 digits. Input of 24 or

more digits is possible after performing§§)~ 0 §§) 6 0 ~ .

37

38

CHAPTER 2 Manual Operations

• Statistics Output

Statistics can be obtained by STAT LIST, STAT LIST 1, STAT LIST 2, EOX

and EOY commands. This computer allows . the calculation of the following

statistics:

Statistics Formula

n Number of statistical data processed n

LX Sum of x data LX

Ly Sum of y data Ly

LX t 2 Sum of squares of x data LX2

LY t 2 Sum of squares of y data Ly2

LXY Sum of products of x andy data LXY

Lx/n Mean of x data
LX --

n

Ly/n Mean of y data
LY

n

xan-1 Sample standard deviation of x data JnLx2 - (Lx)2
n(n-1)

yan-1 Sample standard deviation of y data JnLY 2 -(Ly)2
n(n - 1)

X<Tn Population standard deviation of x data JnLx2 -(Lx)2
n2

y<Tn Population standard deviation of y data JnLY 2 - (Ly)2
n 2

Linear regression constant term
LY-b. LX

a
n

b Linear regression coefficient
nLxY-Lx ·LY

nLx2 -(LxF

nZ.xy-z,x. z,y
r Correlation coefficient

/ 1nz.x 2 - (Z,x) 'I ln'Z.Y2 - (Z.Y) 21

EOX Estimated x value for a given y value EOX(Y)=~
b

EOY Estimated y value for a given x value EOY<x) =a+x·b

2-5 Statistical Calculations

STAT LIST (or STAT LIST 0) is for outputting all of the statistics.

ST AT LIST I is for one-variable statistics alone and ST AT LIST 2 for paired­

variable statistics.

The details are explained in the following table :

STAT LIST (0) STAT LIST 1 STAT LIST2

n n n

Lx Lx Lx

Ly Ly

Lx2 Lx t 2 Lxt 2
Ly2 L yt 2
Lxy Lxy

x Lx/ n Lx/ n LX/ n

ii Ly/ n Ly/ n

x<Y n x<Y n x<Y n x<Y n

y<Y n y<Y n y<Y n

x <Y n- 1 x<Y n- 1 x<Y n - 1 x<Y n- 1

y<Y n- 1 y<Y n- 1 y<Y n-1

a a a

b b b

r r r

Output of all Output of one- Output of paired-
variable secondarily-the statistics variable statistics processed statistics

Regression formula : y = a + b • x

EOX and EOY are treated as functions. These can be calculated in the same way

as ordinary numerical functions; "EOXy value" or "EOY x value". Whenx and

y values are variables or numeric values, parentheses can be omitted in the same

way as in the case of SIN, etc.

Now master statistical calculations by doing the following exercises:

Exercise:

The table at right shows the state of ship­

ments of product x and product y. Deter­

mine the variance of shipments by finding

the standard deviation.

~ c

x

y

4 5

2 2

1 5

6 7 8

5 8 8

5 5 9

39

40

CHAPTER 2 Manual Operations

Operation:

First input the statistical data shown in the table. (Use the RUN mode.)

Input allx andy data .

Upon completion of data input, output all of the statistics one by one by using

STAT LIST.

(Number of data)

(Sum of x data)

~~~~~ r1 =5 

(Sum of y data) 

(Sum of squares of x data) 

(Sum of squares of y data) 

(Sum of products of x and y data) 

(Mean ofx data) 

(Mean of y data) 

(Standard deviation of x) 

(Standard deviation of y) 

f--~~~~~~~~~~~-

~ :Ex =25 
- ·-:1C' 
- .:.,._I 

:::r~l2 = 161 
'=:"'·.i·r· ·-:·-1 C'..., 
~ .. r ..:.. - ·-'I 
';."'- .... - 14q '-'.I .. .. r - .. • 

:::r~/n=5 
ZY/n=5 

r;:::) • ..·· .. .-, C' .-. ,_,- ,- , .-, .-. 1 .-. ,-, 
~ )

1 1.J t I = L • ._1 .a::. .. · 1:1 L .L L •:• 

Others omitted 

Comparison of products x and y on the basis of the above calculation results 

shows that the sums total and the mean values are the same, but the standard 

deviation is larger in the case of product x . This suggests that there is a larger 

variance in shipment of this product. 

Now find correlation coefficients and estimated values through a regression 

calculation with paired data. 



2-5 Statistical Calculations 

Exercise: 

The table below shows the ratios of advertising expenditure (advertising expendi­

ture/operating expenses) and the ratios of operating profit (operating profit/sales 

amount) in seven chain supermarkets last year. Was advertising effective? 

~ore 1 2 3 4 
Ratio of advertising 
expenditure(%) 0.8 2.1 2.5 1.8 
Ratio of operating 
profit (%) 2.5 3.4 3.7 3.2 

Approach: 

Draw up a scatter diagram based on the table. 

y 

6 

5 

.· Ratio of operating profit 
3 

4 

2 ·. 

5 6 

3.1 4.0 

4.3 6.3 

2 3 4 x 

7 

1.0 

2.3 

Ratio of advertising expenditure 

The scatter diagram suggests that profit increased with advertising expenditure. 

The line connecting the plotted points in the diagram is called the regression 

curve. In this case, it is almost linear and is therefore called linear regression. 

This linear regression is expressed by y = a + b · x where a is called the linear 

regression constant term and b the linear regression coefficient. 

The correlation coefficient (r) is known to be within the range of - I ~ r ~ I. 

Correlationship is positive when 0 < r ~ I , negative when - I ~ r < 0, and no 

correlationship when r = 0 . 

Now input data on the seven stores and obtain statistics. 

4 1 



42 

CHAPTER 2 Manual Operations 

Operation: 

(Statistical memories cleared) 

8~ 0 • 8 GJ 2 • 5 8 
8~ 2 • 1 GJ 3 • 4 8 

(Input all the paired data.) 

Next, output paired-variable statistics by using STAT LIST 2. 

(Mean ofx) 8~8~28 

(Mean ofy) 8 

(Standard deviation of x) 8 

(Standard deviation of y) 8 

(Sample standard deviation of x) 8 

(Sample standard deviation of y) 8 

(Linear regression constant term) 8 

(Linear regression coefficient) 8 

(Correlation coefficient) 8 

Zx/n=2. 185714286 
i:""., .. __ -;r .·-,14·-.. -.C'..,1 
O::...~•-'t1- . .:•,t•I .L•:•·-'I 
:,..,-i·t-, = 1 n4q~·::i·~·4~·=· ... .. . - -· ·-· -· - ._.,_, 
yi:i'n = 1I2452.35:::1 '3 
x ct r1 -1 = 1 . 1 .3 3 4 7 3 .~~ ::: 1 
Yei'n-1= 1. 345008409 
a =1.174221646 
b =1.14251297.3 
r =0.9628252383 

It is evident from the value of r that x and y have a positive correlation. Then, 

what advertising expenditure ratio should be adopted to bring the operating 

profit ratio to 5 .7%? What operating profit ratio will result when the advertising 

expenditure ratio is 4.5%? Now estimate such values. 

(Estimated value of x) 

(Estimated value of y) 

EOX5 . 78 
EOY4 . 58 

3. 961248986 
6 I 3155.30022 

It is estimated from the above answers that the advertising expenditure ratio 

needed to bring the operating profit ratio to 5 .7% is 3 .96%, and that when the 

advertising expenditure ratio is 4.5%, an operating profit ratio of 6.32% will 

result. 



In this chapter we shall study the 

use of the "Function Memory" 

which is one of the features of the 

computer. This function greatly 

simplifies calculation of formula in 

which only the numeric values 

assigned to a variable differ. 



44 

3-1 Calculations with the Same Formula 

This unit is provided with a very convenient function called "Function Mem­

ory". This function permits easy calculations by simply assigning numeric values 

to the variable as long as the formula is stored in advance. 

The following keys are used for the "Function Memory". 

~ ........... Stores the contents currently written. 

~ .. . .. . ..... Displays the stored content. 

§I .. ......... If the stored content is a formula , the desired numeric value will be 

assigned to the used variables and the calculated result will be dis­

played. 

A simple example is given below to learn the use of these three keys. 

Example: 

Obtain the value of y for each of the values assigned to x when y = 3 .43 Cos x. 

(Calculate in three decimal places.) 

x s· 15° 22° 27 ° 31 ° 
y 

Operation: 

First specify the angle unit and number of decimal places. 

~@) (Angle unit: "DEG") 

(Obtain in three decimal places by rounding off the 4th deci­

mal place.) 

Next, input a formula, and press the~ key to store it . 

Press the~ key to confirm that the formula has been stored. 

Then, start calculating by pressing the§) key. 



0 
80 
0 
150 

0 
220 
§] 

270 
§] 

310 

3-1 Calculations with the Same Formula 

1/= 3.397 
;:.:; ? 
'/= 3 I 313 

1..1 - ~ 1 ·:·.:1· 
1- ·-· · ·-·~ 

':·:f ·~1 
I: ' 

'/= 3.056 

'/= 2.'340 

As shown in this example, the "Function Memory" is ideal for calculating a 

formula in which only the numeric values assigned to a variable differ. 

If we add a semicolon (;) at the end of the formula when storing, the formula 

can be executed repeatedly by pressing the 0 key instead of the 0 key. 

Example: 

Obtain the value of V for the respective values of r when V = 4/37Tr3 . (Calcu­

late in three decimal places by rounding off.) 

r 4.579 7.381 9.244 6.133 1.416 

v 

Operation: 

First specify the number of decimal places. 

Then input the formula. 

45 



46 

CHAPTER 3 Using the "Function Memory" 

Start the calculations. 

4. 5 79~ 

7. 381 ~ 

9. 244~ 

6. 133~ 

1. 416~ 
~(@ 

p ? 
U= 402 , 162 
F ? 
1.) = 1 6 ::: 4 II ,3 5 ( 

i.)= 33fiS = 7:::4 

i.) = 966 II 290 

1)= 11=S93 

Repeated operations can be terminated by pressing~(@ . 



3-2 Utilization for Preparing Tables 

Multiple formulas can be written by separating with colons (: ) . Tables such as 

that shown below can be easily prepared by using this method . 

Example: 

Complete the following table. (Calculate in three decimal places by rounding 

off.) 

x y P = X · Y Q= X/Y 

4.27 1.17 

8. 17 6.48 

6.07 9.47 

2. 71 4.36 

1. 98 3.62 

Operation: 

§SwlIJ 3 0 (Specification of number of decimal places) 

CEJ§]IKJC!JIYJ~2:i[QJ§JIXJCZJIYJ~2:i~ (Storing the formula) 

§! (Calculation starts) 

4 . 270 
1 . 1 70 

0 
~ 

' ' -, 
' 
:·:: : 
! ! ' ! : 

F' = 4 . 996 
C! = 3. 650 

Continue to input the values of X and Yin this manner , and the values of P and 

Q will be calculated in successive order and the table will be completed as shown 

below . 

x y P=X · Y Q= X/Y 

4. 27 1.17 4.996 3.650 

8.17 6.48 52.942 1. 261 

6.07 9.47 57.483 0.641 

2. 71 4.36 11 . 816 0.622 

1. 98 I 3.62 7 .168 0.547 

47 



48 

CHAPTER 3 Using the "Function Memory" 

Messages can also be added by enclosing them in quotation marks (" ") immedi­

ately after the variables. This will be convenient since the message will be dis­

played at time of input and it will be possible to tell at a glance what value is 

being input. 

Example: 

Complete the following table. (Calculate in two decimal places by rounding off.) 

Radius (r) Height (h) 

1.205 2.227 

2.174 3.451 

3.357 7.463 

Operation: 
~~[[)[g)~ 

Volume of a cylinder Volume of a cone 
(U = " r'h) (V = l/3U) 

Cill§§J e:, ©wwCIJlliJCQJw [[)§§1e:,EJ§§J61Il[[)§§J e:, [[)[K]CQJCIJCill CID§§J e:, §§16 2 

IIlOO§§JC:iOOwCIJ@OOrn§§JC:i§§J600§§JC:i©~lliJW§§JC:iEICill0~§§16~ 

§9 (Calculation starts.) F.:ADIUS ·..: 
1. 205~ HEIGHi ·~: 

2. 22 7~ 

FADIUS ·~= 

If the values of radius (r) and height (h) are input in this manner, volume (U) of 

the cylinder and volume (V) of the cone will be calculated successively and the 

table will be completed as shown below. 

Radius (r) Height (h) Volume of a cylinder Volume 'f£ a cone 
(U = "r'hJ (V = l3U) 

1.205 2.227 10.16 3.39 

2.174 3.451 51.24 17.08 

3.357 7.463 264 .22 88 .07 



3-2 Utilization for Preparing Tables 

By using this "Function Memory", simple repetitive calculations can be per­

formed easily without the need to use "Program Calculations" which will be 

explained in the next chapter. 

• Some of the points requiring care in using the "Function Memory" are listed 

below. 

I) Character string of up to 62 characters can be stored with the ~key. The 

63rd character and after will be discarded. Since spaces included in the com­

mands and functions input with the one-key command will be counted as 

characters, delete these spaces with [§) if there are too many characters. 

2) The stored contents will be retained even if power is turned off or if Auto 

Power off function is activated. 

3) Error will occur when 0 is pressed if the stored content is other than a 

formula. 

4) The functions in the fomula must be numeric functions. 

5) The variables in the formula must be numeric variables A ~ Z (see page 57). 

6) If an exclusive character variable $ (see page 57) is included in the formula, 

the content of the variable $ will be used . (e.g. VAL ( $ ) *A , etc.) 

*It will be convenient to use the "Function Memory" in combination with the 

DAT A BANK function. See Chapter 7, Section 7-10 "Combining with the 

Function Memory" on how to use this combination . 

49 



50 



In this chapter we will explain 

programs using the BASIC language. 

BASIC is one of the programming 

languages and is currently used in 

practically all personal computers. 

Publications on BASIC language are 

also readily available on the market. 

In this chapter, we shall focus our 

attention on special precautionary 

points relative to programming 

with BASIC language. Details in 

relation to commands and grammar 

of BASIC will be explained in 

Chapter 6 "Command Reference''. 



52 

4-1 Writing Programs 

The example shown below is a program using BASIC in which the value of y is 

calculated with the formula y = 2x 2 + 9 lx + 125 by inputting the value of x. 

1 0 I N PUT'' x = '' , X 

20 Y=2*Xt2+91*X+125 
30 PR I NT''y ='' ;Y 

40 GOTO 10 
50 END 

A BASIC program is a collection of "lines" with each line being composed of 

numerals (integers from 1 to 9999 can be used) called line numbers and state­

ments (commands such as INPUT or formulas such as Y=2*X t 2+91 * 
X + 1 2 5 ). The program will also be executed in successive order starting from 

the smallest line number. 

We will start now by inputting the above program. 

Press ~ITJ. The symbol "WRT" should appear in the upper part of the display . 

BUZZER 

Blinks_J 

Symbol indicating the 
r"WRT" mode. 

DEG 
WRT 

Status of the program areas 

Remaining capacity of the free area. 

I 

r: s 2 a 

The program must be written only when in the WRT mode as shown above. 

The large characters "F (11 2 3 4 5 6 7 ::: '3" indicate the usage state of the 

program areas. 

*The computer is provided with 10 program areas (PO ~ P9) in which multiple 

programs can be stored separately. The program area can be changed by press­

ing any number key from 8 to 8 after pressing §1 . 

The blinking number indicates the program area currently specified . The num­

bers displayed indicate open areas. If a program has been written, that area num­

ber changes to a cursor (- ). In the display shown below for example, the area 

specified is PS and programs are already written in areas Pl , P8 and P9. 



; ... : 
: 

4-1 Writing Programs 

f .-, ., 
• !..f !..f 

The number at the upper right part of the display indicates the remaining capac­

ity (number of bytes) of the area in which programs or data can be written (free 

area). The free area will be 7520 bytes when nothing is written and these numbers 

will decrease each time a program or data is written. 

This operation erases the programs in all program areas and variable contents, 

and prepares program area PO. 

Let us now write the previously mentioned program. 

ITJ[@§§J~ §§le:, 0000EI §§le:, GJOO§l 
~[@rnEl~OOOO§§Jci~ffi~ITJOOOOffiITJ~§§l 

~[@~~§§Je:,0rn0E1§§Je:,§§!6rn§l 

~[@§§)~ITJ[@§J 

§[@W@CID§J 

The program will be stored with the above key operation. Do not forget to press 

the §I key at the end of each line since the line will be stored only by pressing 

§I . Since one-key input is also possible for frequently used commands such as 

INPUT and PRINT, speedy inputs will be possible. (For example, the five 

characters "INPUT" can be input by pressing~ IX] . CIJ(N)~(IDITJ can also be 

applied.) 

• Method of Correcting Program Errors 

I) When an error is found during input before 0 is pressed: 

Move the cursor to the error position by a cursor movement key ( El or El ) 
and correct the error. (Same as in Chapter 2) 

2) When an error is found after storing the line by pressing 0: 
Enter LIST line No. §I in the WRT mode to display the contents of the line 

and correct as in I) above. 

53 



54 

CHAPTER 4 Programming with BASIC Language 

In either case, always press the~ key after correcting since corrections will not 

be made unless this key is pressed. 

*Press~cillJto display and correct the line immeriiately before a line being dis­

played. 

*If there are additional programs following the corrected line in the case of 2), 

the next line will be displayed when ~ is pressed. If no other correction is 

required, press the ~ key to clear the display. 

• Addition and Deletion of Lines 

1) To add a lirie, simply input it after clearing the display by pressing the~ key 

in the WRT mode. If a line is input with an already used line number, this line 

will have priority and the previously stored line will be erased. 

2) To delete a line, enter the line number to be deleted after clearing the display 

with the ~ key and press ~ . 

• Erasing Programs 

1) To erase a program in the currently specified program area, enter NEW~ in 

the WRT mode. 

2) To erase the programs in all program areas (PO~ P9) and all data at one time, 

enter NEW ALL~ in the WRT mode. 

*The stored program will be retained even when the power is turned off. 



4·2 Executing a Program 

To execute a stored program, specify the RUN mode by pressing~(@. The 

display will then appear as shown below. 

rSymbol indicating the RUN mode. 

] 
LProgram area number currently specified. 

The program in the currently specified program area will start if the RUN com­

mand is executed here. If the previously stored program is executed, it will be as 

shown below. 

(Program starts.) 

(2 is entered for x.) 

(The value of y is displayed.) 

(Jumps to line 10.) 

x=? 
.-, 
.L _ 

y= 315 
::r~=? 

To pause execution of a program, press the~ key. "STOP" will then appear at 

the upper right part of the display and the execution will stop. If the~ key is 

pressed again, the currently specified program area number and the stopped line 

number will be displayed. Execution of the program will resume when~ is 

pressed. 

BUZZER RUN DEG 

::::= -, 
; 

BUZZER RUN DEG STOP 

STOP -, = ~.::: = ; 
BUZZER RUN DEG STOP 

~ (Stops at line 10.) F'0-10 
BUZZER 

~ (Resumes execution.) .-, 
RUN DEG 

.. 

55 



56 

CHAPTER 4 Programming with BASIC Language 

Press~~ to terminate execution of a program. The display will then return to 

the initial state of the RUN mode. 

• Other Methods of Executing a Program 

1) RUN Line Number ~ : 

This operation will cause the program to start from the specified line. 

2) 88- 8 : 
If a number key is pressed after the~ key in the RUN mode , the program 

in the area specified by the number key will be executed from the first line. 

*Variables are not cleared when executing a program. 



4-3 Variables 

Twenty-six variables named A to Z are provided as a standard feature of the 

computer and calculation results and numeric values can be stored in these 

variables. These variables have already been used for manual calculations, and 

they will serve as "memories" when the computer is used as a calculator. 

Capital alphabetical letters A to Z are used for variable names and these will be 

called simple variables. Subscripts in parentheses such as A(3) and X( 4, 5) can 

also be added to the variable name. Variables in this form are called array 

variables and are used when handling large volumes of data. 

All of the variables mentioned up to this point are for numeric values and are 

called numeric variables. Variables to which character strings are assigned are 

called character variables. Character variables are indicated by adding a dollar 

sign ($) after the variable name such as A$. Character variables can also be used 

as array variables such as C$(12). In addition to these variables , the computer is 

provided with the exclusive character variable $. 

In other words, the computer is provided with the following variables. 

Simple variable Array variable 

Numeric variable A, B, C···, z A(O), X ( 2, 2) · · · · · · · · · · · · · · · etc. 

Character variable A$, B $, .. . z $' $ A$(0), X $ ( 2, 2) · · · · · · · · · · etc. 

The numeric variable will store numeric values of up to 12 digits (I 2 digits for 

a mantissa and 2 digits for an exponent) and the character variable will store 

character string of up to 7 characters. The exclusive character variable $ will 
store character string of up to 62 characters. 

< Two Array Declarations> 

This computer is capable of array variable declarations by DIM statements and 

array declarations by DEFM statements. By using a DIM statement, it is possible 

to use array variables of up to three dimensions. The DEFM statement is used 

when desiring to expand the number of variables but it can also be used to 

declare array variables. A maximum of up to eight array variables can be used 

simultaneously with a DIM statement. 

57 



58 

CHAPTER 4 Programming with BASIC Language 

< DIM mode and DEFM mode > 

It will not be possible to specify an array by a DIM statement and a DEFM state­

ment at the same time. That is , the computer will select either the DIM mode or 

the DEFM mode and will display the mode such as "DEFM" if in the DEFM 

mode. When power is switched ON, the computer will revert to the state it was in 

before power was switched OFF. If a DIM statement was executed, it will revert 

to the DIM mode and, if a DEFM statement was executed, it will revert to the 

DEFM mode. 

< Precautions when Switching Over> 

Precautions will be required when switching modes since the array declared with 

DIM will be cleared when switching from the DIM mode to the DEFM mode, 

and the array declared with DEFM will be cleared when switching from the 

DEFM mode to the DIM mode. 

< Array Declaration with a DIM Statement > 

This computer is capable of declaring array variables of up to three dimensions. 

These array variables consist of two types which are the character array variables 

and the numeric array variables . 

1) Declaration of one-dimensional array variables 

A DIM statement is used to declare array variables and a one-dimensional 

array variable will be specified as follows. 

DIM A(10) *The numeral 10 in parenthesis is called a 

subscript. 

There are 11 elements in this array consisting of A(O), A(l ), A(2), . . . A( 10). 

These array elements exist independent of variables such as A, B, C, etc. 

which are numeric variables. A CLEAR statement or ERASE statement is 

therefore used when clearing these arrays. When declaring two array variables, 

punctuate the array variables with a comma. 

DIM A(3) , 8(3) 



4-3 Variables 

We can then use array variables such as A(O), A(l), A(2), A(3), B(O), B(l), 

B(2), B(3). 

For a character array variable, add the symbol$ after the variable name. 

DIM A$(4) 

This declares the array elements A$(0), A$(1 ), ... A$( 4) as the character 

array variables. 

2) Declaration of two-dimensional array variables 

When declaring two-dimensional array variables with a DIM statement, 

punctuate the subscripts with a comma. 

DIM A(2,3) 

The array variable is now declared in two-dimensions. There are 12 array 

elements as shown in the table below. 

( 
~ ~ 

A(O, 0) A(O, 1) A(O, 2) A(O, 3) 

y 

x 
\ 

A(l, 0) A(l, 1) A(l, 2) A(l, 3) 

A(2, 0) A(2, 1) A(2, 2) A(2, 3) 

For a character array variable, add the symbol$ after the variable name. 

As in the case of one-dimensional array variables, multiple array variables can 

be declared at the same time by punctuating with commas. 

3) Declaration of three-dimensional array variables 

Punctuate the subscripts with commas similar to when declaring two-dimen­

sional array variables. 

DIM A$(1,2,3) 

Array declaration is in three dimensions with character array variable A$. 

There are 24 array elements (2 x 3 x 4) and since they exist independent of 

the character variable A$, the contents of the array variable remains un­

changed regardless of what is substituted for A$. Similar to the one-dimen­

sional array variable, it is possible to declare multiple array variables at the 

same time by punctuating with commas. 

59 



60 

CHAPTER 4 Programming wi th BASIC Language 

4) Effective range of array variables 

One array can be used in multiple programs since array variables are common 

for all program areas from 0 to 9 . Since eight bytes will be required for one 

array element, care will be required to ensure that there will be sufficient 

memory capacity when declaring different array variables in each program. 

For method of using array variables with the DIM statement, refer to Chapter 

5 "Program Library" and Chapter 6 "Command Reference." 

< Variable Expansion > 
Although 26 variables (A to Z} are provided as a standard feature of the com­

puter, additional variables can be used by variable expansion . The variables can 

be expanded by using the DEFM command and specifying with the format 

"DEFM Number expanded (numeric expression)". 

Example: 

To add 20 variables for a total of 46, operate as shown below in the RUN or 

WRT mode . 

BUZZER RUN DEG 
DEFM 

DEFM: 2~J 

In manual operation, the number of variables will be displayed as shown in the 

above . 



4-3 Variables 

Number of variables can be expanded up to a maximum of 966. 
The remaining capacity of free area will decrease 8 bytes for each expanded 

variable so care will be required since there may be insufficient space to create 

a program if expanded excessively. The table below shows the relations between 

the number of variables and the maximum capacity of the free area. This shows 

that a large number of variables can be used with the RP-8 RAM expansion pack. 

Number Number of Standard Free area with the RAM 
expanded variables free area expansion pack 

0 26 7520 15712 
1 27 7512 15704 
2 28 7504 15696 

I I I I 

171 197 6152 14344 
172 198 6144 14336 
173 199 6136 14328 
I I I I 

939 965 8 8200 
940 966 0 8192 
941 967 - 8184 
I I I 

1195 1221 6152 
1196 1222 6144 
1197 1223 6136 

I I I 

1963 1989 8 
1964 1990 0 

L: ]' 
T . 

Capacity with nothmg stored 

The newly expanded variables are used as array variables following variable Z. 

The relation of each variable will be as shown below. 

A(26)= 8(25)= .. ······················ = Y(2)= Z(I) 

A(27)= 8(26)= ······ · ···· · ... · ·· · ·· ··· = Y(3)= Z(2) 

A(965)=8(964) =················ =Y(941) =Z(940) 

61 



62 

CHAPTER 4 Programming with BASIC Language 

The DEFM command cannot only be used in manual operation but can also be 

used in a program. For example, if we wish to use array variables Z (0) to Z (20) 

in a program and assign a numeric value J to Z (J), the program can be created 

as follows. 

Example : 

10 DEFM 20 ·· ·20 variables are expanded . 

20 FOR J=0 TO 
30 Z(J)=J 
40 NEXT J 

20 l Numeric values are assigned to the array 
variables . 

*When the DEFM command is used in a program, the number of variables wi~l 

not be displayed when executed. 

The DEFM command is also used to display the current number of variables. 

DEFM only will be executed in this instance. 

I°'"" ""MO 

A· . z: 26 M~CiEFM: 20 

*When "DEFM" only is used in a program, the number of variables will be dis-

played when executing the program. 

Notes: 

1. If the variables are expanded, that specification will be saved even when the 

power is turned off. Execute DEEM 0 to return to the standard 26 variables. 

*The variables will return to the standard 26 if NEW ALL~ is operated in 

the WRT mode or if changed over to the DIM mode. 

I """ "'" MO MOM 

A· .z:26 DEFM:f1 

2. If the number of bytes used to expand the variables is specified in excess of 

the remaining free area, a MEMORY OVER error (Error 1) will occur to 

protect the stored programs and data . 



4-3 Variables 

<Precautions in Using Variables> 

1) If the names of the numeric variable and character variable are the same, the 

same memory space will be used. For this reason, it will therefore not be 

possible to use a numeric variable A and a character variable A$ at the same 

time. If the following program is executed, an error (Error 6) will occur on 

line 20. (See page 69 for details.) 

1 0 A$='' CAS IO 11 ······Assigns character string "CASIO" to charac­

ter variable A$. 
20 PRINT A 
30 END 

···· ·· Displays the content of numeric variable A. 

* Excluding array variables in the DIM mode. 

2) Care should be taken when using an array variable in the DEFM mode since 

it uses the same memory space as some of the simple variables. In the figure 

shown below, the variables combined with equal signs (=) use the same 

memory space. (Although numeric variables are shown, these relations are 

the same as for character variables.) 

A=A(O) 

8 = A(l)= 8(0) 

C = A(2)= 8(1)= C(O) 

D = A(3)= 8(2)= C(l)= D(O) 

Y = A(24)= 8 (23)= C(22)= ··· ·· · ·· · ··· = Y(O) 

Z = A(25)= 8(24)= C(23)=··············· = Y(l)= Z(O) 

i 
Simple variables Array variables 

For example, if we execute the following program, the content of variable C 

will be 10. 

10 DE FM 
20 C=0 
30 A(2)=10 
40 PRINT c 
50 END 

3) Since variables are common in all program areas, care should be taken in 

assigning variables when creating programs using multiple program areas. 63 



64 

4-4 Method of Calculating the Program Length 

The maximum capacity of the free area used for programs and DATA BANK is 

7520 byt~s. When the RAM expansion pack is used, the free area will be 15712 

bytes. This free area decreases as programs and data are written. (The figures 

shown at the upper part of the display in the WRT mode indicates the remaining 

number of bytes.) The number of bytes required to write programs and data are 

calculated as shown below. 

• Line number Two bytes for one regardless of the number between 

1 to 9999. 

• Command ........ One byte for one command. 

• Function .... ..... One byte for one function. 

• Character . ....... One byte for one character (a space will also be con­

sidered a character.) 

• ~ key ... . ...... One byte will be required when the ~key is pressed 

at the end of a line. 

• If an array variable is declared with a DIM statement, eight bytes will be 

required for one array element. 

• If the number of variables is expanded with the DEFM statement, eight bytes 

will be required for each variable expanded. 

When using many array variables or when setting up a long program, it will be 

necessary to consider the length of the program according to the above calcula­

tions and to trim any unnecessary portions. 



4-5 Convenient Techniques 

Following are two techniques that are convenient to know when programming. 

• Using the Program Areas 

This unit is provided with ten program areas (PO to P9) into which individual 

programs can be stored. One method of using these areas is to locate the main 

routine in one program area and the subroutine in the other area. A simple 

example is shown below. 

Example: 

Program area PO (Main routine) 

10 X=12 
20 PRINT 
30 PRINT CSRX; ''@''; 

40 GOSUB :t:t: 1 
50 GOTO 20 
60 END 

Program area Pl (Subroutine) 

1 0 K$=1<EY$ 
20 IF K$=" 4 '' THEN X=X-1 : IF X<0 THEN 

X=0 
30 IF K$="6'' THEN X=X+ 1 : IF X>23 THEN 

X=23 
40 RETURN 

When the main routine in PO is executed,@(unit price mark) appears at the 

center of the display. Press the~ key to move@to the left and the[§) key to 

move@to the right. These are the only keys that can move@. 

In this program, the main routine in PO displays@and the subroutine in Pl cal­

culates the moving position of@by key input. The subroutine in Pl is accessed 

by GOSUB #1 on line 40 of the main routine. 

This method of allocating routines with coherent functions in one program area 

facilitates the usage of long programs. 

65 



66 

CHAPTER 4 Programming with BASIC Language 

• Using Arrays with the DIM Mode 
In this example, we will process two types of data by using two-dimensional 

array variables. 

Example: 

Store the names and heights of 15 people. 

P0 10 DIM A$( 1, 14) 
20 FOR C=0 TO 14 
30 INPUT "NAME'', A$ ( 0 'c ) 
40 INPUT "HEIGHT'' ,A$( 1 ,C) 
50 NEXT C 
60 END 

p 1 10 INPUT "NAME'', N$ 
20 FOR C=0 TO 1 4 
30 IF N$=A$(0,C> THEN PRINT 

A$(1,C>;"cm~:GOTO 10 
40 NEXT c 
50 PRINT ''NO NAME'' 
60 GOTO 10 

Input the names and heights to PO since this is the input program. Pl is the 

program to display the height of the pertinent person when a name is entered. 

Variable C is used for controlling the FOR~ NEXT loop and variable N$ is used 

for temporary storage when searching a name. 

Array A$ (0, 0) ~A$ (0, 14) is an array variable to store the names of 15 people 

and array A$ (1, 0) ~ A$ (1, 14) is an array variable to store the heights of 

15 people. 

*On line 30 in Pl, when the name of the input person is concerned, his height is 

displayed. Then execution is jumped to line 10. To input a different name, 

press the§! key when the height of previous person is displayed. 



4-6 Error Messages and Debugging 

An error in a program is called a "bug", and tracing and correcting this error is 

called "debugging". 

Debugging can be carried out easily in the computer since it is provided with an 

automatic check mechanism that displays an error message if there is an error in 

program execution or in the grammar of the BASIC language. It is important to 

trace bugs persistently since there may be certain cases when a bug does not 

become an actual error but the desired results cannot be obtained. 

1. Debugging with the Error Message 

With the display as shown below, the error message reveals the type of the error, 

the program area and the line number where the error occurred. 

Type of error __j' L L Line number where the error occurred 
Program area where the error occurred 

The Error 2 display is called an "error code" and indicates the type of error. The 

various error codes are shown in the following list together with causes and 

countermeasures (debugging methods). 

67 



CHAPTER 4 Programming with BASIC Language 

< Error Message List > 

Error code/ Cause Countermeasure Meaning 

Error 1 •Unable to write programs or ex- • Erase unnecessary programs 

Memory over pand variables due to insufficient with the NEW command or 

or system capacity of free area. reduce the number of 

stack over variables. 

•Calculating area (stack) unable •Separate and simplify the 

to hold formula since the formula. 

formula is excessively complex. 

•Unable to write data in the data •Clear the array 

bank since capacity is insuffi-

cient. 

•Nine or more arrays were 

declared. 

Error 2 •Format error in the program or •Correct the error in the input 

Syntax error formula. program. 

•The formats of left side and right 

side in the assigned statement 

differ. (Such as character type 

and numeric type) 

•Attempted to read character in •Change numeric variable to 

a numeric variable with READ/ character variable or check for 

READ#. character (including space) in 

the DAT A statement. 

•Character string operation ex- • Shorten the character string. 

ceeded 6 2 characters. 

Error 3 • When the calculation result of a •Correct the formula or the 

Mathematical formula exceeds 10'00• (Over- data. 

error flow) 

•When arguments are outside the •Check the data. 

input range of numeric func-

tions. 

•When the results are uncertain or 

impossible. (Attempted to divide 

with a 0) 

68 



4-6 Error Messages and Debugging 

Error code/ Cause Countermeasure Meaning 

Error 4 •No jump destination for the •Specify the correct jump 

Undefined GOTO or GOSUB statements. destination. 

error • There is no data to be read with •Write data 

READ/ READ# or RESTORE#. 

•The line number specified with •Correct the line number. 

RESTORE does not exist. 

Error 5 •When the argument is outside •Correct the argument error. 

Argument the input range of commands 

error and functions requiring argu-

men ts. 

•The subscript in the array is out- •Change the subscript. 

side the input range. 

•Attempted to specify two arrays • Change the array name. 

with the same name but differ-

ent subscripts. 

Error 6 •Attempted to use a variable that •Expand the variables with the 
Variable error was not added. DEFM statement. 

•Attempted to use the same varia- •Change the variable name for 

ble name for a numeric variable the numeric variable and 

and a character variable. character variable. 

• Attempted to use an array name • Use after declaring the array 

subscript that was not declared. or correct the array name 

subscript. 

Error 7 •When the RETURN statement •Correspond GOSUB -
Nesting error is used other than when execut- RETURN or FOR - NEXT 

ing a subroutine. correctly. 

•When the FOR statement and 

NEXT statement do not corre-

spond or when the variable of 

the NEXT statement does not 

match that of the FOR state-

ment. 

•When the subroutine nesting •Correct the subroutine or 

(calling a subroutine from a FOR loop nesting level with-

subroutine) exceeds eight levels. in the range. 

69 



CHAPTER 4 Programming with BASIC Language 

Error code/ Cause Countermeasure Meaning 

Error 7 •When the FOR loop nesting 

Nesting error (inserting a loop within a loop 

with nesting form) exceeds four 

levels. 

•The CLEAR statement was used •Move the CLEAR statement 

in the FOR - NEXT loop. outside the FOR - NEXT 

statement. 

Error 8 •When the following occurs with •Clear the password. 
Protect error the password specified. 

1) Input of a different password 

2) Execution of a prohibited 

command 

3) Editing of a program 

4) Loading programs with differ-

ent passwords. 

5) Inputting data in the data 

bank 

6) Calling data from the data 

bank 

Error 9 •SA VE, SA VE# or PUT command •Connect a tape recorder. 
Option error was executed without an interface. 

• When the signal input with the •Reduce the playback volume 

LOAD, LOAD# or GET of the tape recorder. 

command is erratic and cannot •Set the tone control of the 
be loaded. tape recorder to middle posi-

tion. 
•A printer is not connected. •Change the cassette tape. 

• Clean the head of the tape 

recorder. 
•When the printer is not suffi- •Charge the printer. 

ciently charged. 

•Paper jammed in the printer. •Remove the paper jammed in 
the printer. 

70 



4-6 Error Messages and Debugging 

If an error occurs, specify the WRT mode by pressing ~ ITJ after releasing the 

error by~ key and correct by calling the error line with the LIST command. 

2. Debugging When Error Is Not Displayed 

If the desired result cannot be obtained without any error message displayed, 

there is a "bug" that does not become an error somewhere in the program. In 

this case, d~bugging is carried out while executing the program. 

• Debugging with the STOP Command 

Since the program execution will pause if the STOP command is written imme­

diately after the line containing the variable to be checked, display and check 

the contents of the variable by entering variable to be checked followed by §I . 

To continue executing the program, press §1. 

• Debugging with the TRACE Mode 

Press ~ ~ and "TRACE ON" will be displayed. This mode is called the 

TRACE mode. If a program is executed in the TRACE mode, there will be a 

pause after each line (after each statement when using multistatements). Press 

§I to advance to the next execution. 

The TRACE mode is used to find the bug by tracing the flow of the program. 

Pressing ~QI causes "TRACE ON" to disappear and cancel the TRACE 

mode. 

Other causes of bugs that can be considered are "errors in the variable" and 

"errors in the subscript of an array variable". The program should therefore be 

closely checked. 

7 1 



72 

4-7 Convenient Peripherals 

Although the computer can be conveniently used as an independent unit, op­

tional peripherals are also available. 

Character printer with cassette interface (FP-40) 

Cassette interface (F A-3) (F A-5) 

Character printer (FP- l 2S) 

Interface pack (SB-42) 

The cassette interfaces enable programs in the computer to be quickly stored on 

a cassette tape or loaded from the tape. It will also be possible to store data in 

variables and the DATA BANK. The character printers print out program 

contents, data and calculation results. 

• Connections 

<FP-40 + SB-42> 

FP-1 25 ~r=~F~-""i;;;;;;;;i~~ 
FA-3 

<F A-3 + FP-12 S> 

<F A-5> 

FP-1 2S 

<FP-l 2S> 

*Be sure to switch off the power when connecting the computer with each 

peripheral. 



4-7 Convenient Peripherals 

We will now give a brief description of each function. If further details are 

desired, please refer to the command descriptions in Chapter 6. 

• Storing Programs and Data on a Cassette Tape 

To store programs and data on a cassette tape, connect a tape recorder to the 

computer by using the FP-40, F A-3 or F A-5. 

<Connecting the terminals> 

Each terminal is connected as follows: 

<FP-40> 

EAR(\) 

MIC(\) 

REM 0 

<F A-3> 

DD 

<FA-5> 

Tape recorder 

Bla~ck ~Black (\d)EAR 
Wh White ((dJ MIC 

Gre Grey O REM 

Black 
(\)EAR 

IF (~;" (\d)MIC 
Grey 

0 REM 
I 

Black 
(\d) EAR 

Whit e (\d) MIC 

MIC: MIC terminal. In the case of a stereo-recorder, it is desirable that the 

RIGHT terminal is used. 

EAR: EAR, MONITOR or EX SP terminal. In the case of a stereo-recorder, 

connect to the terminal that was used for recording. 

REM: Connect the REM terminal to the recorder REMOTE terminal. 

*Although the three cables may be connected at the same time, some recorders 

produce noise when both the MIC and EAR terminals are connected. In this 

case, connect only the MIC terminal during recording (from the computer to 

tape), and connect only the EAR terminal during playback (from tape to the 

computer). 

73 



74 

CHAPTER 4 Programming with BASIC Language 

• Operation of the Tape Recorder 

<With the REMOTE terminal connected> 

•The SA VE or PUT command is executed with the tape recorder set to 

"RECORD". 

•The LOAD or GET command is executed with the tape recorder set to 
"PLAYBACK". 

<With the REMOTE terminal disconnected> 

•The SA VE or PUT command is executed with the tape recorder set to 
"RECORD". 

•The tape recorder is set to "PLAYBACK" and started after first executing the 

LOAD or GET command. 



4-7 Convenient Peripherals 

• Program Storing and Loading 

Sometimes the program cannot be stored because of the capacity of free area. 

If the previous program is erased, it cannot be used again. In cases of this nature, 

the cassette interface is very helpful. 

Commands for storing programs on a cassette tape are "SA VE" or "SA VE 

ALL". "SAVE" can only store a program located in a single program area, while 

"SA VE ALL" can simultaneously store programs located in all program areas. 

SA VE Command 

F'.e .3dy Pn I 

SA VE ALL Command 

[ The program located in this program area 
can be stored. 

Programs located in all program areas can be stored. 

The SA VE and SA VE ALL commands are manually executed. 

Example: 

SAVE~ 

SAVE "CASIO" ~ 
SAVE ALL ~ 
SAVE ALL "FX'' ~ 

Characters enclosed with the quotation marks (") after SAVE and SAVE ALL 

are file names which are placed with stored programs. These programs can be 

loaded later by specifying these names. Up to 8 characters can be used for a 

file name . 

LOAD and LOAD ALL commands are used to load programs from a cassette 

tape to the computer. The proper use of these commands depends on whether 

programs were stored by SA VE or SA VE ALL. 

75 



76 

CHAPTER 4 Programming wi th BASIC Language 

~ LOAD 
LOAD ALL 

LOAD ALL 
LOAD "file name" "file name" g 

SAVE 0 x x x 
SAVE "file name" 0 0 x x 
SAVE ALL x x 0 x 
SAVE ALL "file name" x x 0 0 

Items marked with "O" can be loaded; those marked with "X" cannot be 

loaded. 

File names must be identical. 

Example: 

LOAD 0 
LOAD "file name" 0 
LOAD ALL 0 
LOAD ALL "file name" 0 

When programs are loaded by LOAD or LOAD ALL, a display depending on 

the storing format appears . 

Storing format Display 

SAVE PF : 

SA VE "file name" PF : file name 

SAVE ALL AF : 

SAVE ALL "file name" AF: file name 

A program stored by a SA VE command can be loaded to any of the program 
areas by a LOAD command. 

Example: 

Stores the program of PO . 

Loads it to P9. 



4-7 Convenient Peripherals 

Precautions: 

Sometimes a program cannot be stored or loaded smoothly. If this happens, 

check the following items. 

• "Error 9" is displayed during storing. 

[Check point] 

Check if the computer is properly connected to the cassette interface. 

• "Error 9" is displayed during loading. 

[Check points] 

If the tape is stretched, replace it with a new one. 

If the head of the tape recorder is dirty, clean it. 

Set the tone control of the tape recorder to medium. 

• No error is displayed but loading is attempted without success. 

[Check points] 

If the tape recorder output volume is low, increase the volume near MAX. 

Check if the output standard of the tape recorder is in accordance with that 

of the cassette interface. See the owner's manual of the cassette interface for 

the standard. 

• Storing and Loading of Data in the DA TA BANK 

All the data in the DAT A BANK can be stored on a cassette tape at once by 

using "SA VE #" . 

SAVE# "File name" 

Up to 8 characters. 

Up to 8 characters can be placed inside " " for a file name, the same as when a 

program is stored. 

Example: 

SAVE# ''MEMO'' ~ 

77 



78 

CHAPTER 4 Programming with BASIC Language 

"LOAD #" is used to load data in the DAT A BANK from a tape to the com­

puter. 
The previous data are erased when new data are loaded . 

However, if ", M" is specified at the end of the LOAD # command, the data 

from the tape are loaded following the previously stored data left intact. 

LOAD# "File name" 
Up to 8 characters. 

Example: 

LOAD# ''MEMO'' ~ 

When data in the DATA BANK are being loaded, a display depending on the 

storing format appears. 

Storing format Display 

SAVE# MF: 

SAVE# "file name" MF: file name 

• Data Storing and Loading 

A program always has data; it is troublesome to enter these data from the key­

board each time. 

Try a method by which data in the computer are stored on tape and loaded 

again. 

To store data on a tape, "PUT" is used. 

Variables are specified in a PUT command. A file name can also be specified. 

PUT "File name" 

Up to 8 characters. 

Variable 1, Variable 2 

For a file name, up to 8 characters can be placed inside " " as for program 

storing. 

If the exclusive character variable ($) is used, specify it first. Then next two 

variable names are specified to determine the beginning and end of the variables 

to be stored. 



4-7 Convenient Peripherals 

Example: 

Store the contents of the exclusive character variable ($) and 13 variables from 

A to M. 

PUT $,A,M 

Store the contents of array variable A(IO) with the file name "DATA" in the 

DIM mode. 

PUT "DATA'' A(*) 

Store the contents of 36 variables from A to Z (10) with the file name "CASIO" 

in the DEFM mode. 

PUT "CASIO'' A,Z( 10) 

*Assuming that the variables are expanded . 

Since the variable names specify the beginning and end of the variables to be 

stored, place them in alphabetical order (e.g., "A, Z"). A specification such as 

"Z, A" cannot be performed . 

When the variables are character variables, "A, Z" can be specified instead of 

"A$, Z$". 

"GET" is used to load data from a tape to the computer. Variables are specified 

in a GET command. A file name can also be specified. 

GET "File name" Variable 1, Variable 2 

Up to 8 characters. 

Example: 

Load data to the exclusive character variable($) and 3 variables from X to Z. 

GET $,X,Z 

Load the data of file name "DATA" into array variable A (15) in the DIM mode. 

GET "DATA''A(*> 

Load the data of file name "FX" into array variables G (0) to G (59) in the 

DEFM mode. 

GET "FX" GC0> ,GC59 > 

*Assuming that the variables are expanded. 
79 



80 

CHAPTER 4 Programming with BASIC Language 

For details, refer to GET and PUT in Chapter 6 "Command Reference". When 

data is being loaded by a GET command, a display depending on the storing 

format appears. 

Storing format Display 

PUT $,A, Z VF: 

PUT "file name" G, P VF: file name 

• Printing of Programs, Data and Calculation Results 

An exclusive character printer (FP-40 or FP-l 2S) is used for printing out pro­

grams, data and calculation results on paper. See page 72 for the connection 

method. 

Printing is carried out by key operation in the PRINT mode ("PRT ON" dis­

played). The PRINT mode can be specified by pressing ~CZJ and can be 

canceled by pressing ~ ~ . 



4-7 Convenient Peripherals 

I. Printing Program Contents 

Execute the LIST command after pressing §El[2] in the RUN mode. If it is 

desired to print out the con ten ts of all program areas from PO to P9, enter LIST 

ALL~. 

After completing printing, do not forget to press §El~ to cancel the PRINT 

mode. 

2. Printing Out Calculation Results 

When desiring to print calculation results , specify the PRINT mode by pressing 

§)(2) or by writing "MODE 7" in the program. It will be more convenient to 

write "MODE 7" in the program if only certain parts are to be printed. 

*When writing in the program, enter (MJ[QJ[Q]W instead of pressing the §El key. 

3. Printing Data in the DAT A BANK 

To print the memo data stored in the DATA BANK (See Chapter 7), execute the 

LIST# command after pressing §E][2] in the RUN mode . 

*After printing is finished , cancel the PRINT mode by pressing §]~ 

8 1 



82 

4-8 Using a PB-100 Program 

Programs prepared for the PB-100, PB-300, FX-700P and FX-802P can be 

utilized with this computer. 

This computer is provided with more commands than them; its utilization is 

more convenient. 

The BASIC language used by this computer is almost the same as that used by 

the above computers. 

• Different Points 

• Additional Commands 

PASS (Program protection) 

BEEP (Buzzer sound) 

READ (Reads data from a DATA statement) 

DATA (Writes data) 

RESTORE (Specifies data to be read) 

ON~ GOTO (Indirect specification of a GOTO statement) 

ON~ GOSUB (Indirect specification of a GOSUB statement) 

REM (Comment statement) 

DIM (Array declaration) 

ERASE (Clears array) 

LIST V (Confirmation of array variable) 

LIST# (Lists memo data in the DATA BANK) 

LOAD# (Loads memo data in the DAT A BANK) 

SAVE#(Stores memo data in the DATA BANK) 

NEW# (Erases memo data in the DATA BANK) 

RESTORE# (Searches memo data in the DATA BANK) 

READ#(Reads memo data in the DATA BANK) 
WRITE#(Writes memo data in the DATA BANK) 

• Additional Functions 

DEG (Sexagesimal-+ decimal conversion) 

DMS$ (Decimal-+ sexagesimal conversion) 

SIR$ (Converts a numeric value to a character string) 

&H (Hexadecimal-+ decimal conversion) 

HEX$ (Decimal-+ hexadecimal conversion) 



4-8 Using a PB-100 Program 

• Modified Commands 

This computer PB-1 OO/PB-300/FX-700P /FX-802P 

NEW (NEW ALL) CLEAR (CLEAR A) 

CLEAR VAC 

IF - THEN IF-; 

SAVE ALL SAVE A 

LOAD ALL LOAD A 

VERIFY VER 

DEFM (Can be written in a program.) DEFM (Can only be performed manually .) 

• Modified Functions 

This computer PB-1OO/PB-300/FX-700P /FX-802P 

KEY$ KEY 

MID$ MID 

In spite of these different points, a program prepared by the PB-100/PB-300/ 

FX-700P/FX-802P can be fundamentally utilized with this computer. 

However, it is better that programs be rewritten for this computer so that it can 

be easily used or can be easily reconsidered later. 

Example: 

PB-100 program 

10 VAC 
20 FOR A=1 TO 20 
30 INPUT Z<A> 
40 IF Z<A>>B0:B=B+1:GOTO 90 
50 IF Z<A><60:C=C+1:GOTO 90 
60 IF Z<A>>40:D=D+1:GOTO 90 
70 IF Z<A>>20:E=E+1:GOTO 90 
80 F=F+1 
90 NEXT A 

83 



84 

CHAPTER 4 Programming with BASIC Language 

This example is part of a program to enter data and distribute them according 

to their size . Although the program could be used as it is, correct the following 

items. 

Change "V AC" on line 10 to "CLEAR" . 

10 CLEAR 

Change ";" on lines 40 to 70 to "THEN". 

40 IF ZCA>>80 THEN B=B+1:GOTO 90 

Since variable expansion is necessary in this program, write the DEFM com­

mand, manually executed in the PB-100/PB-300/FX-700P/FX-802P, at the 

beginning. 

5 DEFM 20 

Example: 

PB- I 00 program 

10 INPUT ''1=1/0=2/P=3",N 
20 IF N<1 THEN 10 
30 IF N>3 THEN 10 
40 GOTO N*100 

This program is used to determine branch destination according to the work. 

To adapt it for this computer, modify it as follows by using an ON ~ GOTO 

statement. 

10 INPUT ~1=1/0=2/P=3",N 
20 ON N GOTO 100,200,300 
30 GOTO 10 



4-8 Using a PB-100 Program 

The program is simplified by utilizing an ON ~ GOTO statement as mentioned 

above; testing the data N is deleted . 

Programs and data stored on tape by CASIO's handheld computers can be 

loaded as they are to this computer. However, the reverse operation is not 

always possible. Therefore precautions shall be taken . The relationships are as 

follows. 

This computer-+ PB-110, PB-220, PB-410, FX-720P, 
FX-820P, FX-770P, FX-785P, FX-790P 

SAVE With password 
PF AF MF 

LOAD 

LOAD 

LOAD ALL 

LOAD# 

This computer-+ PB-lOOF, FX-710P 

SAVE With password 
PF AF MF 

LOAD 

LOAD 

LOAD ALL 

This computer-+ PB-100, PB-300, FX-700P, FX-802P 

SAVE With password 
PF AF MF 

LOAD 

LOAD 

LOAD ALL 

[Q:J Can be loaded. 

C2J Cannot be loaded. 

85 



86 

CHAPTER 4 Programming with BASIC Language 

PRECAUTIONS 

• When transferring a program prepared with this computer to other CASIO's 

computers (excluding PB-110,PB-220, PB-410, FX-720P, FX-820P, FX-770P, 

F~-785P and FX-790P), a READ#, WRITE#or RESTORE#command must 

not exist in the program. In the case of PB-100 series, use KEY and MID in 

place of KEY$ and MID$. 

• A program created with other CASIO's computers may not be correctly 

executed in this computer. 

If a numeric expression is used at the IF ~THEN branch destination, an error 

occurs. In this case, correct it to IF ~ THEN GOTO branch destination. 

• When transferring a program prepared with this computer to other CASIO's 

computers (excluding FX-785P and FX-790P), a DIM or ERASE command 
must not exist in the program. 

Use the array variable in the DIM statement after first changing to a DEFM 

statement. 
Be careful of the method of determining the array variable when changing. 

(See page 57 .) 



In this chapter we will deal with 

slightly longer comprehensive pro­

grams. The first is a sorting program 

in which data are rearranged. Array 

variables are used in an interesting 

manner in this program. The 

second is an exciting game program. 

Please note the usage of the various 

commands from the examples of 

these programs. 



88 

5-1 Rearrangement of Data (Sorting} 

Sorting of disorderly data often becomes important in the creation of practical 

programs. Here we will introduce a program using a method called "bubble 

sort". 

Consider a program to display the ranking of eight examinees from No. 101 to 

108 by sorting their points supplied. 

• Program List 

10 REM bubble sort 
20 H4PIJT "t·it...jmber i::of d .::t.tJ.:oo.", C 
30 ~H1 DI MEt-6 I OM 
40 DIM 0(3,C) 
50 REM da.t.:;.. set. 
60 FOR A=1 TO C 
70 READ C• ( 1, A) , D ( 2, A) 
:30 NE:,,:T A 
90 PRHff "si:1rtJin9"; 

100 REM sortJ 
110 FOR A=1 TO C-1 
120 FOR B=A+l TO C 
130 IF 0(2,A)~0(2,8) THEM 160 
140 D=D(1,A):D(1,A)=D(1,8):0(1,B>=D 
150 D=D(2,A):D(2,A)=0(2,8):0(2,8)=D 
160 NE>ff B 
170 r4E:=<T A 
1:30 FOR A=l TO C:D(3,A>=A: NE:=<T A 
190 FOR A=l TO C-1 
200 IF 0(2,A))0(2,A+1) THEM 220 
210 D(3,A+1)=0(3,A) 
220 NEXT A 
300 REM 1:::i1..1tp1...1tJ 
310 FOR A=l TO C 
320 BEEP : PRIMT 
330 PRINT 0(3,A); CSR5; "r4o";D(1,A); cs 

R15; ".;."; 0(2, A) 
340 NEXT A 
350 PRINT "OlJER" 



5-1 Rearrangement of Data (Sorting) 

360 END 
1000 DATA 101, 40 
1010 DATA 102,60 
1020 DATA 103,80 
1030 DATA 104,60 
1040 DATA 105,60 
1050 DATA 106, :30 
1060 DATA 107,20 
1070 DATA 108,95 

• Variables List 

Variable Role Variable Role 

A 
} Loop control 

D (2, 1) 

} Soo<0• 
B variables 

c Number of data 

D Used for D (2, C) conversion 

D (1, 1) D (3, 1) 

) R'"kiog l fomi•ee•' 
numbers 

D (1, C) D (3, C) 

• Program Description 

Line Nos. 20 - 40 .... Inputs number of data and declares array. 

Line Nos. 50 - 80 .... Loads data in line No. 1000 and after into array. 

Line Nos. 100 - 170 ... Main routine for sorting. Compares scores successive­

ly and swaps the score and the examinee's number 

with line number 140 and 150 if the large and small 

scores are reversed. 

89 



90 

CHAPTER 5 Program Library 

Line Nos. 180 - 220 .. . Assigns ranking to data sorted according to sequence 

of scores. 

Correspondence of array variables will be as shown 

below in relation to a person of ranking A 

Examinees' Nos. Scores Ranking 

DC 1,A )~ 0(2,A l~D<3,A) 

Line Nos. 300 - 360 . . . Displays sorted data in the order of ranking, exam­

inee's No. and score. 

Execution example: 

Operation Display 

sc1 r tin ·=i 

1 t·~o 1 ~j ::: -t '35 
.-, 
..:.. t·~ 0 1 0 6 ~ :::o 
.-, 
..:.. r·jo 1 03 -t :::o 
4 f·~ -! ! - 1 Ci c: 

I ·- -t 60 
4 f·~ -!_ ' 1 0 -, ..:.. -t 6[1 

4 i·io 1 0 4 -t 60 
-; 
I f·~ c I 1 [1 1 -t 40 
,-, 
::i f·~ 0 1 0 -; I -t 2[1 

' -j ' ' EF - : ... 

• Since the sorted data remain in array D (1, 1) ~ D (3, C), they can be used in 

a different program. 



5-2 Horse Race Game 

Place your bet by considering the odds on 4 horses in this horse race game. Start 

with $20.00 and make a fortune by picking the dark horse. 

• Program List 

10 i;::EM Horse P.~.ce 

20 CLEAR : DIM A(3-:r4) 
30 R=1:$="+.++" 
4(l pi;:: nff II< Horse F:a1::;e '>II ~ 
50 FOR .J=1 TO 5: SEEP : BEEP 1: r·lE:=ff 

.j 

7•3 PR HF II HOR'.3E II ~ 
80 FOR J=l TO 4: PRINT T; MI0$(J,1);: 

l"!E>=:T .J 
90 GOSUB 1000: GOSUB 1000 

100 PRINT : BEEP 
: 10 I r-iPUT ti HOl.•J man)' p 1 a:~,·ers 
120 IF P>5 THEN 110 
:.30 IF P<l THEN 110 

If p 
='' 

:;,40 PF:Ir-4T "ALL ?LA'/ER'.3 HAUE !20"; 
150 GOSUB 1000 
:60 DIM XC2,P),Y$(P) 
i 70 FOR J=l TO F': :=<<2,.J)=20: r·E=<T .J 
1:30 F:EM ini t.i-~.l ize 
:·?0 G=0 
200 FOR .J=l T1J 4 
210 AC1,.J)=0:A(2,J)= RAN#:A(3,J)=1+ IN 

TC10t(1.2-AC2,.J))) 
22•3 \··JE::<T .J 
230 P~:Ir·iT : P~'.I~~T 11 <~'.ACE";P; .. > .. ;: GOSU 

8 1000 
24~3 F:EM betJ memory 
250 FOR J=l TO P 
260 F·R r r~T : ;:.:; i:: 1 , .J) =0: '/$ i:: .J > = '' '' 
27~3 IF ;:-;c, .J)=0 THEt·4 45~3 

2:30 P~'. I~~T fl PLA'/E~'. 11 ; .J ~ " HAS $"; :=-=: ( 2, .J); 

2'?0 1:10SUB 1 •300 
300 PR nff : PR nff "i:<:ATE 11 

; 

91 



92 

CHAPTER 5 Program Library 

310 FOR K=l TO 4 
320 PRINT CSRK*5; MIDS(K,1);A(3,K); 
330 r·lE>=:T i< 
340 130SUB 1000: BEEP 

360 AS= KE'/S: IF AS=" " THEr·l 360 
37>3 IF AS< "0" THEi'l 360 
3:30 IF A!>"4" THHl 360 
3'30 r·l= 1..JAL (AS) : IF ~·l=0 THEr·l 450 
400 AS= MIDS(N,1):'/$(J)=AS 
410 BEEP : PRnn : PF:rnT "PLA'/ER 11 ; J; 11 

II; A$; 
420 I rlF'UT 11 MOrlE'r' 11 

, ::-:: < 1 , .J' 
430 IF X(2,J)<X<1,J) THEN 410 
440 ::~:i::2:- .J)=>=:<2:- .J)-'.:0::( 1, .J) 

450 r·JE=-::T J 
460 PRii'ff 
470 PRHff II < :3TART I >11 ; 

4:30 FOR K=l TO 10: BEEP : NEXT K 
490 PRHff 
500 REM main loop 
51 •3 IF G=2 TH Erl 60~} 

520 FOR .J=1 TO 4 
530 IF 13~ 1 TH Erl 56~} 

540 PRHff C::3RA( :!. '.J); II II; 

550 IF RAN#*(0.9+A(2,J)/l0)>0.7 THEN A 
( 1, .J)=A( 1, .J)+l 

560 IF A<1,J)=23 THEN G=G+l 
570 PRINT CSRA<l,J); MID$(J,1); 
5:30 r·lE>=:T J 
59~} J30TO 5•30 
600 RE~1 ·3oa.l 
6 rn PR Irff c:;R0; "GOAL 1 11 ; 

620 FOF.: .J=1 TO 7: BEEP : BEEP 1: r·lE=ff 
T 

·.! 

630 130SUB 1000 

640 i=oR .J=l TO 4 
650 IF A<1,J)=23 THEN H=A(3,J):A$= MID 

$(.J, 1) 



660 f·4E>=:T ._T 

~.70 F=0 
680 FOR J=l TO P 
6 '3(J "1=0: IF ::-:; i:: l ' .n =[t THEr·1 73>3 
700 IF YS<J)=AS THEN M=X<l,J)*H 
710 PRINT : BEEP 
720 P~'.If·4T 11 PLA1Y1EF'. 11 ;J; II ~PPIZE $ .. ;M; 
730 X<2,J)=X<2,J)+M: GOSUB 1000 

F+l 

(:i0:3U8 1000 
7f.>3 r·iE:=·::T .J 
770 f='RH-ff : BEEP : IF F=P THEr·1 :;::30 
780 t=·P I i'ff II F'.EPLA'·.-' [ •.,.• /t·C -::.i• ; 
7'?0 AS= ~2/S: IF AS=" " T-HEr·i 7'?0 
800 IF AS="\'" THEr·1 R=R+1: GOTO i:30 
:310 IF AS="W THEr·1 :;::3~3 

:320 GOTO 7'?0 
:330 PPI~4T : F'~'.If'-4T 11 (:iAME Cit.)E~'. 11 

:340 Ef-fD 
10~30 F:EM t. i mer s1...1b 
1010 FOR ~:: =1 TO 150: t1E::<T t< 
1020 F:ETUR~i 

5-2 Horse Race Game 

93 



CHAPTER 5 Program Library 

• Variables List 

Variable Role Variable Role 

A$ For keys and characters K Loop control variable 

A (1, 1) Position of the spade ( + ) M For calculating prize 

A (1, 2) Position of the heart ( f ) N For horse number 

A (1, 3) Position of the diamond p Number of players 
(.) 

A (1, 4) Position of the club ( +) R Race number 

A (2, 1) Random number of ( + ) x (1, 1) Player l's bet 

A (2, 2) Random number of ( f ) x (1, 2) Player 2's bet 

A (2, 3) Random number of ( + ) 

A (2, 4) Random number of ( +) 
A (3, 1) Odds on (if) X (1, P) Player P's bet 

A (3, 2) Odds on (If;) x (2, 1) Player l's holdings 
A (3, 3) Odds on ( +) x (2, 2) Player 2's holdings 
A (3, 4) Odds on ( f) 
F For determining game over : 

G For determining goal X (2, P) Player P's holdings 

H Odds on winning horse $ For selecting a horse's character ( +, f , +or f) 
J Loop control variable 

94 



5-2 Horse Race Game 

• Game Description 

One to five persons can play this game with each player starting with $20.00. 

There are 4 horses numbered from I to 4 with I being the spade if , 2 the heart 

f , 3 the diamond + , and 4 the club of . Select a horse from I to 4. A player 

selecting 0 passes a race since there is no horse numbered 0. 

The odds on each horse are displayed for each race. If the horse selected by a 

player wins, the player receives an amount equal to the odds times his bet. If the 

selected horse does not win, the player loses his bet. If a player's holdings drop 

to 0, he must drop out of the game. Game is over when all player's lose their 

holdings. 

Following is a description of the sequential displays and key operations in a 

sample game. 

I) Start game. 

[[][illrn:J~ (Displays title.) 

(Describes horse.) 

: Input~:.::~: ::,~:::::Y«•l l i ,~ i,.i 1n ::i r 1 :• F· l .3 ye rs ·~· 
li"l c1nm.i holding.) : R ~ ~ _ ~· L R V E ;;:· ::: H A I) E $ 2 0 

(First race.) <. b:'. HU::. 1 .> 
'---~~~~~~~~~~~~~~~~ 

3) Input horse and bet. 

(Holdings of player 1) 

(Odds displayed.) 

i 
l 

1 
H 

.-, 
..::.. 

p= - $ 20 -, -
f ' • 7 ·-· 

(Inputs horse of player 1.) p 1 7 if: 1 2 f 3 if 7 

of 12 

1 ·~· ..:. 
!--~~~~~~~~~~~~~~~~ 

(Selects ill' horse.) 

ITJ~ (Bets $10.00) 

(Holdings of player 2) 

(Odds displayed.) 

1 f 1·1 u i·i !::. '/ 
-, 

10_ 
PLAYER 2 HAS $ 20 
RATE it 12 f 3 + 7 

(Inputs horse of player 2.) p 2-:i- if 1 2 f 3 • 7 
(Selects + horse.) 

(Bets $5.00) 5_ 

-, 

of 1 2 
of 1 2 

95 



96 

CHAPTER 5 Program Library 

4) Race starts. 

..:· 

(Exciting race is being taken.) I ~ + •• 
~~~~~~~~~~~~~~~~ 

5) Race ends.

(Placing decided . + wins.)

(Player 1 loses.)

(Holdings of player 1)

(Player 2 wins $35.00.)

(Holdings of player 2)

GOAL! • f ++
PLAYER 1 ~P~I~~ $ 0

2 HAS $ 50
-:rc:­
.. :.i ·-'

(Do you wish to play again?) F.: 1:::: p LA y [1·/ / r·i J ·~·

6) Press CY] to advance to the next race and press [fil for "GAME OVER".

• This game is programmed so the lower the odds the easier to win and horses

with high odds are difficult to win . Good luck!

98

CHAPTER 6 Command Reference

The following descriptions apply symbols and terms frequently used in the

syntax.

• {0000}
• [oooo J

• 0000*

One of the elements inside { } must be selected .

The I f itself must not be written.

The element inside [] can be omitted.

The [] itself must not be written .

The element with * on the top right can be repeat­

edly used. The *itself must not be written.

• Numeric expression Numeric value, calculation expression, and nu­

meric variable such as 10, 2 + 3, A, S * Q.

• Character expression

• Expression

• Parameter

• ®
• @
• ®
• ®

Example:

Character constant, character variable, and charac­

ter expression such as "ABC", X$, N$ + M$.

General name of numeric expressions and charac­

ter expressions.

An element that accompanies a command.

Can only be executed in a program.

Can only be executed manually.

Can be executed both manually and in a program.

Function instruction that can be executed both

manually and in a program.

DATA [data] [,[data]]*

Since all data are provided with a bracket [] , it will also be possible to write

"DATA" only. Since ,[data] is provided with [] *,this element can be written

repeatedly. This can therefore be written "DATA data, data, ... " If we omit the

first [data] , this can also be written "DAT A, data, data, ... "

L" N GOTO { me o. }
#program area No.

There are two different ways to write this statement as shown below.

1) GOTO line No.

2) GOTO# program area No.

6·1 Manual Commands

NEW (ALL)

Function:

Program erase. Erases programs and variables.

Parameter:

When ALL is specified, all PO - P9 programs and variables are erased.

Explanation:

1) If ALL is not specified, the program in the presently specified program area is

erased. Clearing the contents of variables and canceling of the expanded varia­

bles are not performed.

2) If ALL is specified, the programs in all program areas and variables are erased.

The number of variables specified by DEFM will be initialized to 26 and the

computer will be in the DTh1 mode.

3) Cannot be executed while a password is specified.

4) Cannot be used in a program.

5) Can only be executed in the WRT mode.

*NEW ALL can be abbreviated as NEWA.

Example:

~(TI NEW ~

99

100

CHAPTER 6 Command Reference

RUN
Function:

[Execution Start Line)

line No .

Program execution.

Parameter:

Starting line number: 1 <:::: line number < 10000

Explanation:

1) Executes a program from a specified line (when the line number is omitted,

execution starts from the beginning of the program).

2) When a specified line number does not exist , execution starts from the line

with the closest larger number.

3) Variables are not cleared.

Example:

10 PR INT ''LINE 10"
20 PR INT "LINE 20''
30 END

RUN ~
RUN 20 ~

L H~E 10
L H~E 20

6-1 Manual Commands

Function:

Displays program contents or the variable names and subscripts of the declared

arrays.

Parameter:

Line No.:

ALL:

V:

Explanation:

1. RUN Mode

No. of the first line to be displayed.

Displays the contents of all PO ,.;., P9 programs sequen­

tially.

Displays variable names and subscripts of the declared

arrays.

1) Sequentially displays the content of a program from a line number if it is

specified, or from the beginning if it is omitted.

2) Since the content of a program is automatically displayed sequentially, press

the ~ key to stop this. Press the 0 key to display the next line and after.

3) Array variable names are displayed in sequence one at a time. Press 0 to dis­

play the next array variable name.

4) In the PRINT mode (when "PRT ON" is displayed), the display is not

stopped but is made sequentially at high speed.

2. WRTMode

1) Displays the content of a program from a line number if it is specified, and

from the beginning if it is omitted .

2) Since each line is displayed for edit in the WRT mode, if edit is not required,

press the 0 key to advance to the next line. Also, if the §I key is pressed

before the 0 key, the previous line is displayed.

3) The array variable name is displayed one at a time with LIST V. Press 0 and

the next array variable name will be displayed.

101

102

CHAPTER 6 Command Reference

• When ALL is specified, the contents of all PO~ P9 programs are sequentially

displayed. In this case they are sequentially advanced even in the WRT mode,

so edit cannot be performed .

• This command cannot be used while a password is specified.

*LIST ALL can be abbreviated as LIST A.

Example:

LI ST §!

LI ST 30 §!

LIST V ~

PASS
Function:

"Password"
Character string

Specifies or cancels a password.

Parameter:

Password : 1 ~character string~ 8.

Explanation:

6-1 Manual Commands

1) If this command is executed when a password is not specified, a password is

specified for all program areas (PO~ P9).

2) If this command is executed while a password is specified, this password is

canceled only when entering the corresponding password. When passwords do

not correspond, a protect error (Error 8) occurs.

3) A password consists of a 1 ~ 8 character string in which spaces, alphabetical

characters, numerals, special symbols, etc . can be used. However,(") cannot

be used.

4) While a password is specified, commands such as LIST, LIST ALL, LIST #,

LIST V, NEW, NEW ALL, and NEW# cannot be used. Also no writing (WRT

mode) can be made; it is attempted, an error (Error 8) occurs.

5) Can.not be used in a program.

6) A password can be maintained while the power switch is off.

7) If a program is stored on a cassette tape by a SA VE or SA VE ALL command

while a password is specified, this password is also stored. When a program

with a password attached is loaded from a cassette tape by a LOAD or LOAD

ALL command, the password is also loaded . Also, when a currently specified

password in the mainframe and the password of a program loaded from a

cassette tape are different, the program cannot be loaded from a cassette tape

(Error 8).

103

104

CHAPTER 6 Command Reference

Precaution:

If the password is forgotten after specifying, press the ALL RESET button on

the back panel and cancel the password. Note that this operation causes all

programs and variable contents to be cleared.

Example:

PASS '' CAS 10 ''~

*The same procedure is used for specifying and also cancelling the password .

SAVE (ALL)

Function:

Stores a program on a cassette tape.

Parameter:

["File name"]
Character string

6-1 Manual Commands

ALL:

File name:

Stores the programs in ail program areas.

1 ~character string~ 8. Can be omitted.

Explanation:

1) When ALL is omitted, the content in the presently specified program area is

stored.

2) When ALL is used, the contents of all PO~ P9 program areas are stored.

3) When a password is specified, the storing is performed with that password.

Therefore, the password is the same as that stored when the program is

loaded by the LOAD command.

*SA VE ALL can be abbreviated as SA VE A.

Example:

SAVE §I

SAVE "CAS 10 "§I

SAVE ALL "FX "§I

105

106

CHAPTER 6 Command Reference

LOAD (ALL)

Function:

Loads a program from a cassette tape.

Parameter:

["File name"]
Character string

ALL:

File name:

Loads the programs in all program areas.

1 ~character string~ 8. Can be omitted.

Explanation:

I) When ALL is omitted, a program stored by "SA VE" is read into the presently

specified program area.

2) When ALL is used, programs stored by "SA VE ALL" are read into the PO~

P9 program areas.

3) With "LOAD ALL", the stored programs in the computer will be erased and

a new program will be loaded from the cassette tape.

4) When a file name is specified, a program with the same file name will be

searched and loaded from the cassette tape. If the file name is omitted, the

first program found on the cassette tape will be loaded.

5) If a program with a password is loaded, that password will also be loaded.

*LOAD ALL can be abbreviated as LOAD A.

SA VE and LOAD Relationship

LOAD LOAD LOAD ALL LOAD ALL
"File name" "File name"

SAVE 0 x x x
SAVE 0 0 x x "File name"

SAVE ALL x x 0 x
SAVE ALL x x 0 0 "File name"

*File names are assumed identical. 0 ... Can be loaded.
X ... Cannot be loaded.

6-1 Manual Commands

VERIFY

Function:

["File name"]
Character string

Checks the status of a program and data stored on a cassette tape.

Parameter:

File name: 1 ~character string~ 8. Can be omitted.

Explanation:

1) When a file name is specified, the file with this name is checked.

2) When the file name is omitted, checks the first file that appears on the

cassette tape.

3) The parity check system is used to check a storing format.

Example:

VERIFY ~
VERIFY "PROG 1 '' ~

CLEAR ®

Function:

Clears all variables including array variables.

Explanation:

1) Clears all variables ; all numeric variables are cleared to 0 and all character

variables to a null.
2) This command can be used both in a program and manually.

3) Since control variables are also cleared in a FOR~ NEXT loop(see page 119),

an error (Error 7) occurs during NEXT statement execution.

*The CLEAR command functions the same as V AC.

107

108

6·2 Pl'ogl'am Commands

END ®

Function:

Terminates program execution .

Explanation:

Since program execution is terminated, the next program is not executed even if

it exists.

STOP ®

Function:

Temporarily suspends program execution.

Explanation:

1) Temporarily suspends program execution and displays "STOP" after which

input waiting occurs.

2) After suspension, execution is resumed by pressing the ~ key.

3) If the~ key is pressed while execution is stopped by a STOP statement, the

program area number and line number are displayed .

4) Calculations can be performed by manual operation when execution is

suspended by STOP.

6-2 Program Commands

(LET)

Function:

{ Numeric variable = numeric expression }
Character variable = character expression

®

Assigns the value on the right side of the equal (=) sign to the variable on the

left.

Explanation :

1) A numeric expression corresponds to a numeric variable, and a character

expression corresponds to a character variable.

2) LET can be omitted.

Example ~

10 LET X=12
20 Y=Xt2+2*X-1 ·· · · · ···· ··· LETcanbeomitted.

30 PRINTY
40 A$='' CASI 0 11 ··· · · · · · ··· · · ··LET can be omitted.

50 LET B$=A$+~FXq
60 PRINT 8$
70 END

109

110

CHAPTER 6 Command Reference

REM

Function:

Comment
Character string

Statement that expresses a comment.

Explanation:

®

1) Written in a program . Content after REM in one line is treated as comment

statement and is therefore not executed .

10 REM TEST : A=50
c:; Not executed.

2) When a command to be executed is written on the same line , write a multi­

statement sign (:)before the REM statement.

Example:

1 0 R E M AR E A · Determines program name.

20 INPUT "R=" , R
30 S= n*R t 2 : REM CALCULATION Adds comment
4 0 p R I NT S to the line.

50 END

INPUT

Function :

6-2 Program Commands

["Message statement",] variable name ®
Character string

[, ["Message statement",] , V . bl] * ana e name
Character string

Assigns input from the keyboard to a variable.

Parameter:

Message: Character string.

Variable name : Numeric variable name or character variable name.

Explanation:

1) Input from the keyboard is assigned to a variable when the ~ key is

pressed.

2) If there is a message, " ?" will be displayed after the message and the com­

puter will be in key input wait status.

3) If the message is omitted, "?"only will be displayed.

4) In the key input wait status with the INPUT statement, the message and "?"

will be cleared with the first key input.

5) Error (Error 2) will occur if character string data is input to a numeric varia­

ble. Since "?" will be displayed again and a numeric value input will be

requested when the~ key is pressed, make a new input. If~~ is pressed,

program execution will be terminated.

6) A numeric expression can be used as the input to a numeric variable and the

value of the numeric expression will be assigned to the numeric variable .

In this case, even one alphabetical letter will be regarded as a numeric

expression (variable) .

7) If the ~key only is pressed without inputting the numeric value or

numeric expression, the value in the numeric variable will not change.

8) If the ~ key only is pressed without inputting a character expression when

inputting to a character variable, null will be assigned to the character

variable .

111

112

CHAPTER 6 Command Reference

9) If a character string data exceeding seven characters is input to a character

variable, Jhe first seven characters will be significant and the eighth charac­

ter and after will be disregarded.

Example:

10 INPUT A
20 INPUT ~NAME=q,8$
30 INPUT ~C$=q,C$,~D$=q,D$

40 INPUT ~FQRM=q,$

6-2 Program Commands

KEY$ ®

Function:

Enters one character from the keyboard.

Explanation:

1) Accepts the input of only one character from the keyboard.

2) Numerals, alphabetical letters and symbols can be input.

3) The data entered will be in single character form.

4) Null will occur when there is no key input.

5) Since "?" is not displayed and input waiting also does not occur, KEY$ is

usually used in combination with an IF statement.

*KEY$ can be abbreviated as KEY.

Example:

1 0
20
30
40
50
60
70
80

PR I NT''BEEP";
A$=KEY$
IF A$="0"THEN BEEP
IF A$="1"THEN BEEP
IF A$="E ''THEN 70
GOTO 20
PR I NT: PR I NT" END''
END

Repeated until the (I] key
is pressed.

*A low sound will be generated when the ~ key is pressed and a high sound

will be generated when the IIJ key is pressed. "END" will be displayed and the

program will be terminated when the w key is pressed.

113

114

CHAPTER 6 Command Reference

PRINT [Output element] [{ ' } [Output element)]* ®

Function:

Displays an output element.

Parameter:

Output element : Output control function (CSR), numeric expression,

character expression.

Explanation:

1) Displays an output element. When an output control function is added , the

element is displayed at the location determined by this function .

2) Values are displayed for numeric expressions and character expressions.

3) When an output element is a numeric expression, a position for sign (+, -) is

placed before the value. However , the+ sign is displayed as a blank .

• Character display ____ __,

Output element

• Numeral display '7' ~ ~ ~
'--------

Sign Output element

4) When an output element is a numeric expression and the mantissa is more

than 10 dlgits, the 11th digit is rounded off. When an exponent exists besides

the mantissa, an exponent sign (E) and a two digit exponent are displayed.

5) "," and ";" can be used as punctuation between output elements. When ","

is used, the execution stops (STOP is displayed) after the first output element

is displayed, then the next output element is displayed by pressing the §]

key. When ";" is used, the next output element is displayed continuously

after the first one.

6) When no output element is specified (only PRINT is written), the display is

cleared and is not stopped.

7) The display is not stopped during printing in the print mode (~ (2)).

8) The format for displaying numeric values can be specified by a SET state­

ment.

Example:

10 PRINT 1/3
20 PRINT ,, A=''; A
30 PRINT "SIN 30 ,, ' SIN
40 PRINT ''END";
50 PRINT
60 END

CSR Output location specification
Numeric expression

Function:

30

Displays an output element from a specified location .

Parameter:

6-2 Program Commands

Output iocation
specification: Numeric expression. Values below decimal point are dis­

carded.

0 ~ specification < 24

Explanation:

1) Used in a PRINT statement to specify the location of an output element.

2) The output location of the left end is 0 .

IDDDDDDDDDDDDDDDDDDDDDDDD I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Example:

1 0 FOR L =0 TO 2 3
20 PRINT CSRL; ''A'' ;CSR23-L; ''B''
30 NEXT L
40 END

*Characters A and B are shifted from the left and right respectively each time

the §I key is pressed.

115

116

CHAPTER 6 Command Reference

GOTO

Function:

{
Branched line No.]

line No .
#program area No.

Number 0 to 9

Unconditionally branches to a specified location.

Parameter:

Line No.:

Program area No.:

Explanation:

1 to 9999.

0 to 9.

1) Branches to a specified location.

®

2) When a branched location is a line number, branches to the specified line in

the current program area and executes the program. When the branched line

number does not exist, an error (Error 4) occurs.

3) When the branched location is a program area number, branches to the

specified program area and executes the program from the beginning.

*A numeric expression can be used for the branched line number and the pro­

gram area number.

Example:

10 PRINT ''START'';
20 GOTO 100
30 PRINT "LINE 30"
40 END

100 BEEP 0 :BEEP
110 PR INT
120 PRINT"LINE 120"
130 GOTO 30

6-2 Program Commands

ON Branch condition GOTO [Branched location] ®
Numeric expression [, [.Branched location)]*

B h d 1 . { Line No. * ranc e ocat10n # N program area o.

Function:

Branches to a specified location according to the branch condition.

Parameter:

Branch condition :

Line No.:

Program area No.:

Explanation:

Numeric expression. Values below the decimal point

are discarded.

1 to 9999.

0 to 9.

I) Branches according to the integer part of the value in a branch condition

expression. Branched locations are allocated sequentially according to

ON A GOTO .lQQ, 200, 300, ·
A= l A=2 A=J

2) When the value of the expression is smaller than 1, or when an appropriate

branched location does not exist, the next statement is executed without

branching.

3) As many branched locations that can fit on one line can be written .

Example:

10 INPUT ''A='' ,A
20 ON A GOTO 100,200,300
30 PRINT ''OTHER''
40 GOTO 10

100 PRINT ''LINE 100" :GOTO 10
200 PR INT "LINE 200 '' : GOTO 10
300 PR INT "LINE 300 '' : GOTO 10

*When 1 ~ 3 is entered, branchings to 100 ~ 300 are performed respectively,

otherwise "OTHER" is displayed.

117

118

CHAPTER 6 Command Reference

I F Conditi~nal express~on TH EN {Statement [: statement]*} ®
Companson expression Branched location

B h d I . { Line No. * ranc e ocat1on # N
program area o.

Function:

When a conditional expression is true, the statements after THEN are executed.

Also, when a statement after THEN is a branched location, branching is per­

formed .

Parameter:

Conditional expression:

Line No. :

Program area No.:

Explanation:

Used in the form of a comparison expression.

1 to 9999.

0 to 9.

1) When the conditional expression is true, the statements after THEN are

executed or branching is performed.

2) When the conditional expression is false, the next line is executed.

3) The related operators used in a conditional expression:

The item on the left is equal to the item on the right.

\ The item on the left is not equal to the item on the right.

< The item on the right is larger than that on the left.

> The item on the right is smaller than that on the left.

~ The item on the right is larger than or equal to that on the left.

2 The item on the right is smaller than or equal to that on the left.

4) When two or more conditional expressions exist, several IF ~ THEN state­

ments can be written sequentially.

IF-THEN IF-THEN

5) Since the statements after THEN in one line will be executed only after all

conditional expressions are true, statements to be executed regardless of the

conditional expression must be written as a multistatement before IF or on a

separate line.

*When a statement exists after THEN, ";" can be used instead of THEN.

6-2 Program Commands

Example:

10 N=12
20 PRINT CSR N; "@'';
30 K$=KEY$
40 IF K$=''4''THEN N=N-1: IF N<0 THEN N=0
50 IF K$=''6''THEN N=N+1: IF N)23 THEN N=23
60 PRINT
70 GOTO 20

*" @" is shifted to the left when the [g) key is pressed and is shifted to the

right when the (§] is pressed.

F QR Control variable name = Initi~I value . T Q Fi~al value .®
Numenc express10n Numenc express10n

(STE p Increment) N EXT Control variable name
Numeric expression

Function:

Repeats process contained between FOR and NEXT statements a number of

times specified by the control variable . The value of this variable is changed,

from the initial to the final one, by the increment for each repetition of the

process.

Parameter:

Control variable name:

Initial value:

Final value:

Increment:

Simple numeric type variable name.

An array variable cannot be used.

Numeric expression

Numeric expression

Numeric expression

The value 1 is taken in default of this.

119

120

CHAPTER 6 Command Reference

Explanation:

1) Repeats process contained between FOR and NEXT statements a number of

times specified by the control variable. The value of this variable is changed,

from the initial to the final one, by the increment for each repetition of the

process. When the value of the control variable exceeds the final value, repeti­

tion is terminated.

2) When the initial value is larger than the final value , the execution between

FOR~ NEXT is performed only once.

3) When the increment is positive , the value of the control variable increases by

each increment. When the increment is 0, execution will be repeated end­

lessly. When the increment is negative, the value of the control variable

decreases by each increment. If increment is omitted, one will be specified.

4) A NEXT statement must always correspond to a FOR statement and must be

written after it.

5) FOR~ NEXT loops can have the following nested structure.

10 FOR I= 1 TO 1 0 TI
20 FOR J=11 TO 20]
30 PR INT I ; " : '' ; J
40 NEXT J
50 NEXT I
60 END

6) Nesting can be performed with up to 4 levels.

7) When a FOR ~ NEXT loop is terminated, the value of the control variable

exceeds the final value by the value of the increment.

8) A branching out of a FOR ~ NEXT loop can be performed. If branching

inside a FOR ~ NEXT loop by an IF statement or GOTO statement is

attempted, an error occurs.

GOSUB {

Function:

Branched line No. }
Line No.

#program area No.

Number 0 to 9

Performs a branching to a specified subroutine.

Parameter:

Line No. :

Program area No. :

Explanation:

1 to 9999 .

0 to 9.

6-2 Program Commands

®

1) Performs a branching to a subroutine. A return from this subroutine is per­

formed by executing RETURN.

2) To make a subroutine inside a subroutine is called nesting which can be

performed with up to 8 levels .

3) Return to the statement next to the GOSUB statement is performed by

RETURN.

4) Return to the main routine cannot be performed by an IF statement or

GOTO statement. Therefore, be sure to perform return by a RETURN state­

ment.

5) When the branched line No . does not exist, an error (Error 4) occurs.

*A numeric expression can also be used for a branched line number and a pro­

gram area number.

Example:

10 PRINT "MAIN 10"
20 GOSUB 100
30 PRINT ''MAIN 30''
40 END

100 PRINT "SUB 100"
110 GOSUB 200
120 RETURN
200 PRINT ''SUB 200"
210 RETURN

121

122

CHAPTER 6 Command Reference

RETURN ®

Function:

Provides a return from the subroutine to the main program.

Explanation:

Returns to a statement located just after the statement which called the sub­

routine.

ON Branch condition GQSU B [Branched location] ®
Numeric expression [, [Branched location]] *

h d 1 . { Line No. * Branc e ocatlon # N program area o.

Function:

Branches to a subroutine according to a branch condition.

Parameter:

Branching condition:

Line No.:

Program area No.:

Explanation:

Numeric expression.

Values below the decimal point are discarded.

1 to 9999.

0 to 9.

1) Performs a subroutine branching by the integer part of the value in a branch

condition expression. Branched locations are allocated sequentially according

to the value of the expression.

ON B GOSUB 1000, 2000, 3000· · · · · ·
B = I B =2 B = 3

2) When the value of the expression is smaller than 1 or an appropriate branch­

ing location does not exist, the next statement is executed without branching.

3) As many branching locations as can fit in one line can be written .

6-2 Program Commands

Example: 10 INPUT A
20 ON A GOSUB 100,200,300
30 GOTO 10

100 PR INT "SUB 100" : RETURN
200 PRINT ''SUB 200'' :RETURN
300 PRINT "SUB 300" :RETURN

*When 1 ~ 3 is entered, a branching to the corresponding subroutine occurs.

DATA

Function:

Stores data.

Parameter:

Data:

Explanation:

[data] [, [data]] *
Constant Constant

Character constant or numeric constant.

1) Used to write data that is read by a READ statement.

2) Plural data can be written by punctuation with ", ".

®

3) If only a DATA statement is executed without a READ statement, no func­

tion is performed.

4) When a character constant includes",", place it inside" "

DATA ABC, DEF, "GHI, JKL",
1st 2nd 3rd

5) When data is omitted, a character string with a length of 0 is taken by default.

DATA A, ,B

DATA,

DATA

~ DATA A,''",B

~ DATA "","'' -i-- Null string

~DATA"" __J

6) Even if a command is added to a DAT A statement with a colon (:) , it will be

regarded as data and will not be executed.

DAT A 1 2 , 3 4 , 5 6 : INPUT A

(regarded as data)

123

124

CHAPTER 6 Command Reference

A space following data is not disregarded. Therefore, an error will be generated
if a space is inserted after numerical data.

Example: DATA 1, 2~, 3, 4~
'-------'--These spaces are not disregarded.

READ Variable name [, [variable name]] *

Function:

Reads the content of a DATA statement.

Parameter:

Variable name:

Explanation:

Numeric variable or character variable.

An array variable can be used.

®

1) Allocates data in the currently specified DATA statement sequentially to a

specified variable.

2) Only numeric type data can be read for a numeric variable.

3) Data in DATA statements are read sequentially with the smallest line number

first, and sequentially from the beginning in a statement.

4) After the necessary data are read by a READ statement, the following data

are read by the next READ statement.

5) The first data in the program area where a READ statement exists is read by

the first execution of this statement after which data in the program area at

that time are read sequentially.

6) The specification of data to be read can be changed by a RESTORE state­

ment.

7) When the number of data in a DATA statement is smaller than the number of

variables in a READ statement, an error (Error 4) occurs.

8) When a space exists at the beginning of data, it is skipped.

6-2 Program Commands

Example:

10 DATA 1,2,3
20 READ A,B
30 PRINT A:B
40 DATA 4,5
50 READ C,D,E
60 PR INT C; D; E
70 END

*Reads data sequentially from a DAT A statement and displays them.

RESTORE

Function:

[Line No.]
Numeric expression

Specifies the location of data to be read by a READ statement.

Parameter:

®

Line No.: Numeric expression. Values below the decimal point

are discarded.

1 .,;: line No . .,;: 9999 - -

Explanation:

1) Specifies a DATA statement where data to be read by a READ statement

exist.

2) When a line number is omitted, the data specification is cancelled. After this,

the first data in the program area where a READ statement exists are speci­

fied and read by the first READ statement that is executed.

3) When a line number of the program area is specified by a RESTORE state­

ment, data of the DATA statement with this line number are read sequential­

ly by the READ statement.

4) When a specified line number does not exist or a DATA statement does not

exist on a specified line number and after, an error (Error 4) occurs.

125

126

CHAPTER 6 Command Reference

Example:

10 DATA 1,2,3
20 DATA 4,5
30 READ A,B,C,D,E
40 RESTORE 10
50 READ F,G
60 RESTORE 20
70 READ H, I
80 PRINT A;s;c;D;E;F;G;H;I
90 END

PUT
Function:

["File name"] variable I [, Variable 2] *
Character string

Stores data on a cassette·tape.

Parameter:

®

File name: 1 ~Number of characters of character string~ 8.

Can be omitted.

Variable 1, variable 2:

Explanation:

Specification of the variable to be stored.

Array variables also possible.

1) Stores the contents of variables on a cassette tape.

2) Variable specifications are written as follows.

PUT A Content of variable A.

PUT A, Z Contents of the 26 variables from A to Z.

PUT A(O), A(IOO) Contents of the 101 variables from A(O) to

A(lOO).

PUT$, D, W Contents of the exclusive character variable $

and 20 variables from D to W.

When the content of the exclusive character variable $ must be stored, write $

first .

6-2 Program Commands

3) Write as follows in case of array variables defined in the DIM mode.

PUT A(S), A(9) Contents of A(S) , A(6), A(7), A(8), A(9)

PUT A(0,0,1), A(l,0,0) ... Contents of A(0 ,0,1), A(0,0,2), A(0,1,0),

A(0,1,1), A(0,1,2), A(0,2 ,0), A(0 ,2,1), A(0,2,2)

and A(l ,0,0) when DIM A(2 ,2,2) is defined.

PUT A$(*) Stores all array contents of A$. Will be PUT

A$(*) regardless of whether the array is two­

dimensional or three-dimensional. Two or more

array variables cannot be stored with one PUT

statement.

*Write as follows in case of array variables defined in the DEFM mode.

PUT A, A(S) Contents of the six variables A ~ A(S).

This is the same as PUT A, F.

PUTZ, Z(20) Contents of the 21 variables Z ~ Z(20).

4) Can be executed both manually and in a program.

5) $ need not be attached even when using a character variable .

Example :

Enter PUT A,D when A and C are numeric variables and B and D are character

variables .

PUT A,D

127

128

CHAPTER 6 Command Reference

GET

Function:

["File name"] variable 1 [,Variable 2] *
Character string

Loads data stored on a cassette tape into a variable .

Parameter:

®

File name: 1 ~Number of characters of character string~ 8.

Can be omitted .

Variable 1, variable 2:

Explanation:

Specification of the variable to be loaded.
Array variables also possible.

1) Loads data stored on a cassette tape into a specified variable.

2) Variable specifications are written as follows .

GET A Loads in variable A.

GET A, Z Loads in variables from A to Z.

GET A(O), A(lOO) Loads in variables from A(O) to A(IOO).

GET $, D , W Loads in the exclusive character variable $,

and in variables from D to W.

3) Write as follows in case of array variables defined in the DIM mode.

GET A(S), A(9) Loads into A(S) , A(6), A(7), A(8), A(9).

GET A(0,0,1), A(l ,0,0) ... Loads into A(0 ,0,1), A(0,0 ,2), A(0 ,1,0),

A(0,1 ,1), A(0 ,1,2), A(0 ,2 ,0) , A(0,2 ,1), A(0,2 ,

2), A(l ,0,0) when DIM A(2,2,2) is defined.

GET A$(*) Loads all array A$ data stored with PUT

A$(*) .

6-2 Program Commands

When the number of elements in GET is greater than in PUT, only the PUT

data will be loaded. Conversely, when GET elements are fewer all the GET

elements will be loaded.

Descriptions such as A$() cannot be used in the DEFM mode.

*Write as follows in case of array variables defined in the DEFM mode.

GET A, A(S) Loads into the six variables A~ A(S) same as in

the case of GET A,F.

GET Z, Z(20) Loads into the 21 variables Z ~ Z(20).

4) A variable name stored by PUT can be different from the name read by GET.

5) When the number of stored data is smaller than the number of variables to

be loaded, only the data are loaded sequentially in the variables from the

specified first variable .

6) When a file name is specified, data with the same file name are loaded from

the cassette tape . When the file name has been omitted , data will be loaded

from the first data found on a cassette tape.

7) This can be executed both manually and in a program.

8) GET will be executed in the DIM mode without distinguishing between

character and numeric variables. Error will therefore occur when executing

an array if data stored (PUT) as a character array is loaded (GET) into a

numeric array. If data stored (PUT) as a numeric array is loaded (GET) into a

character array, the contents of the character array will become null.

<Example 1 >
PUT A$(*}
GET A(*)

t
PRINT A (!2J)<-Error 6 will occur in this line (when executing an array).

< Example2 >
PUT A(*)
GET A$(*)

t
PRINT A$ (0)<-Null will be displayed.

129

130

CHAPTER 6 Command Reference

BEEP [{~}]

Function:

Generates a beep sound.

Parameter:

0: Low sound

1: High sound

0 is taken by default.

Explanation:

1) Generates a high or low beep sound.

2) Can be executed both manually and in a program.

Example:

10 BEEP:INPUT~N=~,N
20 FOR 8=1 TO N
30 BEEP 0:BEEP 1:PRINT:PRINT B;
40 NEXT B
50 PRINT:GOTO 10

*Beep sounds are generated number of times specified.

®

6-2 Program Commands

DEFM

Function:

[Number of variables to be added]
Numeric expression

Changes from DIM mode to DEFM mode .

Provides variable expansion.

Parameter:

®

Number of added variables: Numeric expression. Values below the decimal

point are discarded . Can be omitted.

0 ~ Number of added variables~ 940

0 ~Number of added variables~ 1964

(When RP-8 RAM expansion pack is loaded.)

Explanation:

1) Expands the number of variables.

The arrays defined in the DIM mode will be cleared at this time.

2) Number of added variables can be specified according to the number of

remaining bytes.

3) The free area for programs and DATA BANK decreases eight bytes for each

variable expansion.

4) Added variables are used as array variables.

5) When the number of added variables is omitted after DEFM , the number of

currently specified variables is displayed.

6) Can be executed both manually and in a program. When executed manually,

the newly specified status (number of added variables+ 26 basic variables) is

displayed . When executed in a program, the newly specified status is not

displayed .

7) An error (Error 1) will occur if an attempt is made to expand the variables

beyond the number of remaining bytes in the free area .

8) Specification of expansion will be retained even if the power is turned off.

Execute DEFM 0 to cancel the variable expansion and return to the 26 basic

variables .

131

132

CHAPTER 6 Command Reference

Example:

DEFM 10 ~

DEFM ~ 1: . .-:::~~~I~
10 DEFM 10:CLEAR
20 FOR J=1 TO 10
30 PRINT''Z('';J;'')='';
40 INPUT Z(J)
50 NEXT J
60 FOR J=1 TO 10
70 S=S+Z(J)
80 NEXT J
90 BEEP:PRINT~Sum=~;S

100 DEFM 0
1 1 0 END

*Obtains total of the 10 numeric values input.

6-2 Program Commands

DIM [Array name J [, Array name] * ®

Function :

Declares an array.

Parameter:

One-dimensional to three-dimensional arrays can be specified.

1) Array name (i) when one-dimensional

2) Array name (i, j) when two-dimensional

3) Array name (i, j, k) when three-dimensional

4) Changes from DEFM mode to DIM mode if the array name is defaulted .

Array names i, j, k may be specified by the numeric expression 0 ~ i, j, k

:;;;:: 255. Discards decimal values.

Upper case alphabetical letters may be used for the array name.

Explanation :

1) Declares array variable names.

2) Character arrays can be declared by attaching a $ sign immediately after the

array variable name. The storable character length of a character array is a

maximum of seven characters. If an attempt is made to assign a character

string with more than seven characters, all beyond seven characters will be

disregarded.

3) The same array name can be used for a numeric array name and a character

array name.

4) Up to eight arrays can be declared. Error 1 will occur if nine or more are

declared .

5) Error 5 will occur if arrays are declared with the same array variable name

and the different size (i, j, k) of the subscript. When array variables of the

same size are declared, contents of all array variables will become 0 or null.

133

134

CHAPTER 6 Command Reference

Example

10 DIM A(10)
20 A(3)=7

30 DIM A(10)
4 0 P R I N T A (3) <- 0 will be displayed.

6) Error 6 will occur if an attempt is made to use an undeclared array variable in

the DIM mode.

7) Error 1 will occur when memory is insufficient.

8) Multiple array variables can be declared at one time by punctuating with

commas.

Example

DIM A(3),A$(5) , 8(20 , 3)

9) Contents of all array variables will be initialized to 0 or null string by execut­

ing the DIM statement.

10) Array declarations can be cancelled with CLEAR, ERASE, NEW ALL or

DEFM.

*If a DIM statement is executed when in the DEFM mode , the DEFM mode will

be cancelled and all expanded variables will be cleared .

11) Eight bytes of memory will be required for each array declared with the

DIM statement.

6-2 Program Commands

ERASE Variable name[, variable name]* ®

Function:

Deletes array variables.

Parameter:

Specifies array variable name.

Explanation:

1) Deletes array variables confirmable with LIST V.

2) Specification of array variable names are variable names in one upper case

alphabetical character.

Example

ERASE A, A$, B will be specified when the variable name displayed by LIST V

is A(l), A$(1, 1, 1), B(l).

3) Nothing will occur if a nonregistered variable name is specified.

4) If memory capacity becomes low due to array declarations, it may be in­

creased by executing the ERASE command.

135

136

CHAPTER 6 Command Reference

MODE Numeric expression

Function:

Sets the state of the computer.

Parameter:

Numeric expression:

Explanation:

Values below the decimal point are discarded .

4 ~numeric expression< 9

®

1) Sets the angle unit and PRINT mode or releases these modes depending on

the numeric expression used.

2) Settings are as follows .

MODE 4 Sets the angle unit to degrees .

MODES

MODE6

MODE7

MODE8

Sets the angle unit to radians .

Sets the angle unit to grads.

Displays "PRT ON" and sets the PRINT mode.

Releases the PRINT mode .

3) Same setting as by the~ key. However , the RUN mode and WRT mode

cannot be set using this command. Also , input cannot be performed with the

~ key, but by pressing the OO[[]~IIJ keys.

Example:

10 MODE 4
20 A=SIN 30 : PRINT~A= ~; A

30 MODE 5
40 B=COS(n/6l : PRINT~B=~ ; B

50 END

*You can find the "DEG" symbol on the display changes to the " RAD" symbol

during program execution.

6-2 Program Commands

STAT CLEAR ®

Function:

Initializes basic statistics.

Explanation:

1) Clears the contents of memories used for statistical calculations: n (number of

data), :2::x (sum of data x), :2::y (sum of data y), Lx 2 (sum of the square of

data x), Ly 2 (sum of the square of data y) and LXY (sum of the product of

datax andy) .

2) Initializes basic statistics to start a new calculation. Always execute this com­

mand when performing new statistical calculations.

Example:

STAT CLEAR §1

STAT value of data X [[,value of data Y) [;frequency]] @

Function:

Inputs statistical data and the frequency of the data.

Parameter:

Value of data x :

Value of datay :

Frequency:

numeric expression

numeric expression

numeric expression

137

138

CHAPTER 6 Command Reference

Explanation:

1) Inputs statistical data and frequency to the statistics memory .

2) If the value 0f data x is omitted, the previous value will be used as x.
3) If the value of data y is omitted, the previous value will be used as y .

4) If frequency is omitted, one will be considered the frequency .

STAT LIST [\ !)] ®

Function:

Outputs amount of statistics.

Parameter:

0 Outputs all statistics.

1 Outputs statistics for one variable.

2 Outputs statistics for paired variables.

When omitted . . . Outputs all statistics. (Same as ST AT LIST 0 .)

Explanation:

1) Outputs statistics calculated based on the input data STAT LIST, STAT LIST

0 , STAT LIST 1 or STAT LIST 2.

2) Refer to pages 38 to 39 relative to the statistics to be output and the calculat­

ing formulas .

Example :

10 STAT CLEAR : CLEAR
20 FOR N=1 TO 5
30 READ X , Y
40 STAT X , Y
50 NEXT N
60 STAT LIST
70 END

1000 DATA 3, 5 , 4 , 9 , 2 , 1 , 6 , 4 , 6 , 9

6-2 Program Commands

SET \~~) * n is an integer from 0 to 9.

Function:
Specifies the output format for numeric data.

Parameter:
Fn : Specifies the number of decimal places.

En : Specifies the number of significant digits.

N: Releases a specification .

Explanation:
1) Specifies the number of decimal places or significant digits.

®

2) For specifying the number of decimal places (Fn) , a value from 0 to 9 is used .

3) For specifying the number of significant digits (En), a value from 0 to 9 is

used . Also "SET E0" indicates a 10-digit specification.

4) Both specifications are released by "SET N".

5) After executing this command, the specified digits are given by rounding off.

6) The number of digits specified by this command is for the display only and a

12-digit mantissa can remain in the computer.

7) This can be executed both manually and in a program.

Example:

10 X=10*SOR2
20 SET F3:PRINT X
30 SET E3:PRINT X
40 SET N:PRINT X
50 END

139

140

6-3 Character Functions

LEN (Simple character variable)

Function:

Obtains the length of the character string in a simple character variable .

Parameter:

Simple character variable : An array character variable cannot be used .

Explanation:

1) Counts the number of characters in a simple variable.

2) Usable character variables are simple character variables (A$, Y$, $, etc .).

Array character variables such as B$(3) cannot be used .

Example:

10 INPUT~String = ~,$

20 PRINT~Length=~;LEN($}
30 GOTO 10

6-3 Character Functions

(Location [, Number of characters J) MID$ Numeric expression Numeric expression

Function:

Fetches the specified number of characters from a specified location of the

exclusive character variable ($) .

Parameter:

Location:

Number of characters:

Numeric expression. Values below the decimal point

are discarded.

1 S: location< 101

Numeric expression. Values below the decimal point

are discarded.

1 S: number of characters < 101.

When omitted, all characters after the specified location are fetched.

Explanation:

1) Fetches a specified number of characters from a specified location of the

exclusive character variable ($).

2) When the specified location is out of the character string, a null is obtained.

3) When the length of the character string after the specified location is smaller

than the specified number of characters, all the characters after the specified

location are fetched.

*MID$ can be abbreviated as MID.

Example:

10 $=~ABCDEFGHIJKLMNOPQRSTUVWXYZq
20 INPUT~location=q,M,~length=q,N

30 PRINT MID$<M,N>
40 GOTO 20

141

142

CHAPTER 6 Command Reference

VAL (Simple character variable)

Function:

Converts characters in a simple character variable into a numeric value.

Parameter:

Simple character variable: An array character variable cannot be used.

Explanation:

1) Converts characters in a simple character variable into a numeric value .

2) When the content of a character variable includes +, -, • , E or E , it is

converted into a numeric value as it is.

When A$= "-12.3", VAL(A$)-+-12.3

3) When the content of a character variable starts with a character other than a

numeral, +, -, or • , an error occurs.

When A$= "A45", V AL(A$)-+ error (Error 2)

4) When a character other than a numeral is inserted in the middle, only the part

before this character is converted to a numeric value.

When A$= "78A9", VAL(A$)-+ 78

Example:

1 0 z $= ,, 1 2 3 11

20 PRINT VAL(Z$)+45
30 END

*If thts program is executed, the numeric values 123 and 45 will be added and

168 will be displayed.

6-3 Character Functions

STR$ (Numeric expression)

Function:

Converts the value of a numeric expression into a character string.

Parameter:

Numeric expression :

Explanation:

Numeric value, calculation expression, numeric varia­

ble, numeric array variable.

1) Converts the value of a numeric expression into a character string.

2) When the numeric expression is a calculation expression, the calculation

result is converted into a character string.

3) When a numeric expression is positive , th.e sign digit is deleted and only the

numerals are converted .

Example:

10 A=123
20 PRINT STR$<A>+~45~
30 END

*If this program is executed, character strings "123" and "45" will be con­

nected and "12345" will be displayed . (Same as "123" + "45")

143

144

6-4 Numeric Functions

SI N Argument
Numeric expression cos Argument

Numeric expression

TAN
Function:

Argument
Numeric expression

Obtains the value of a trigonometric function for a given argument.

Parameter:

Argument-:

Explanation:

Numeric expression

- 1440° < I argument I< 1440° (degrees)

- 8 7r < I argument I< 8 7r (radians)

- 1600 < I argument I< 1600 (grads)

However, for TAN, " IArgument l = (2n - 1) * 1 right

angle" is excluded.

1 right angle = 90° = f rad = 100 grad.

1) Obtains the value of a trigonometric function for a given argument.

2) The value depends on the angle unit setting; DEG, RAD or GRA (by the ~

key or MODE command).

3) As a rule, the argument is enclosed in parenthesis but the parenthesis can be

omitted if the argument is a variable or a numeric value.

ASN
ATN

Function:

Argument
Numeric expression

Argument
Numeric expression

ACS
6-4 Numeric Functions

Argument
Numeric expression

Inverse trigonometric function that obtains an angle for a given argument.

Parameter:

Argument: Numeric expression.

For ASN, ACS, -1 ~ argument ~ 1.

Explanation:

I) Inverse trigonometric function that obtains an angle for a given argument:

2) The value depends on the angle unit setting (by the~ key or MODE com­

mand).

3) The values of the functions are given within the following range.

Degrees (DEG) Radians (RAD) Grads (GRA)

- 90° ;,,; ASNx ;,,; 90° -i ;,,; AsNx ;,,; f -100 ;,,; ASNx ;,,; 100

0° ;,,; ACSx ;,,; 180° 0 ;,,; ACSx ;,,; rr 0 ;,,; ACS x ;,,; 200

-90° ;,,;ATN x;,,; 90° -~:S:ATNx :s:~ 2- -2 -100;,,;ATN x ;,,;100

4) As a rule, the argument is enclosed in parenthesis but the parenthesis can be

omitted if the argument is a variable or a numeric value.

145

146

CHAPTER 6 Command Reference

HYPSIN
HY PC OS
HYPTAN

Function:

Argument
Numeric expression

Argument
Numeric expression

Argument
Numeric expression

Obtains the value of a hyperbolic function for a given argument.

Parameter:

Argument: Numeric expression

®

Explanation:

largument l ~ 230. 2585092 (HYPSIN, HYPCOS)
largument l < 10100 (HYPTAN)

1) Obtains the value of a hyperbolic function for a given argument.

HYPSIN : sinh x = (e'- e- ') I 2

HYPCON: cosh x = (e'+ e- ') / 2

HYPTAN: tanh x = (e'- e- ') / (e'+ e-')

2) As a rule, the argument is enclosed in parenthesis but the parenthesis can be

omitted if the argument is a variable or a numeric value.

6-4 Numeric Functions

HYPASN
HYPACS
HYPATN

Function:

Argument
Numeric expression

Argument
Numeric expression

Argument
Numeric expression

Obtains the value of an inverse hyperbolic function for a given argument.

Parameter:

Argument:

Explanation:

Numeric expression

HYPASN: largumentl < 5 x 1099

HYPACS: 1 ~argument< 5 x 1099

HYPATN : largumentl < 1

1) Obtains the value of an inverse hyperbolic function for a given argument.

HYPASN : sinh - 1 x = log.(x+ J?+l)
HYPACS: cosh- 1 x =log .(x+v'?"=T)

. h- 1 _ 1 I 1 + x Hy p AT N . tan x - 2 og e l _ x

®

2) As a rule , the argument is enclosed in parenthesis but the parenthesis can be

omitted if the argument is a variable or a numeric value .

147

148

CHAPTER 6 Command Reference

Argument ® LOG Argument
Numeric expression LN Numeric expression

Function:

Obtains the value of a logarithmic function for a given argument.

Parameter:

Argument:

Explanation:

Numeric expression.

0 <argument

1) Obtains the value of a logarithmic function for a given argument.

• LOG Common logarithmic function log10x, logx

• LN Natural logarithmic function logex, lnx

2) As a rule, the argument is enclosed in parenthesis but the parenthesis can be

omitted if the argument is a variable or a numeric value .

EXP
Function:

Argument
Numeric expression

Obtains the value of an exponential functio:i for a given argument.

Parameter:

Argument : Numeric expression.

-10100 < argument ~ 230.2585092

Explanation:

1) Obtains the value of an exponential function (ex) for a given argument.

2) As a rule , the argument is enclosed in parenthesis but the parenthesis can be

omitted if the argument is a variable or a numeric value .

SQR

Function:

Argument
Numeric expression

Obtains the square root of a given argument.

Parameter:

6-4 Numeric Functions

Argument: Numeric expression . 0 ~argument

Explanation:

1) Obtains the square root (yx) of a given argument.

2) As a rule, the argument is enclosed in parenthesis but the parenthesis can be

omitted if the argument is a variable or a numeric value .

CUR

Function:

Argument
Numeric expression

Obtains the value of a cube root for a given argument.

Parameter:

Argument: Numeric expression . largument l < 10 100

Explanation:
I

1) Obtains the cube root (Vx or x 3) of a given argument.

2) As a rule, the argument is enclosed in parenthesis but the parenthesis can be

omitted if the argument is a variable or a numeric value.

149

150

CHAPTER 6 Command Reference

ABS
Function:

Argument
Numeric expression

Obtains the absolute value for a given argument.

Parameter:

Argument: Numeric expression.

Explanation:

1) Obtains the absolute value of a given argument.

®

2) As a rule, the argument is enclosed in parenthesis but the parenthesis can be

omitted if the argument is a variable or a numeric value.

SGN

Function:

Argument
Numeric expression

Obtains a value (1, 0 or -1) corresponding to the sign of a given argument.

Parameter:

Argument: Numeric expression.

Explanation:
1) Gives a value that corresponds to the sign of an argument.

When an argument is positive, 1

When an argument is 0, 0

When an argument is negative, -1

2) As a rule, the argument is enclosed in parenthesis but the parenthesis can be

omitted if the argument is a variable or a numeric value .

INT

Function:

Argument
Numeric expression

6-4 Numeric Functions

Obtains the maximum integer that does not exceed a given argument.

Parameter:

Argument: Numeric expression.

Explanation:

1) Obtains the maximum integer that does not exceed a given argument.

I NT 1 2 • 5 6-1 2
I NT -7 8. 1--7 9
I NT 1 2-1 2

2) This is the same function as the Gaussian function ([x]) used in mathematics.

3) As a rule, the argument is enclosed in parenthesis but the parenthesis can be

omitted if the argument is a variable or a numeric value.

151

152

CHAPTER 6 Command Reference

FRAC
Function:

Argument
Numeric expression

Obtains the decimal part of a given argument.

Parameter:

Argument: Numeric expression .

Explanation:

I) Obtains the decimal part of a given argument. Its sign agrees with the sign of

the argument .

2) As a rule, the argument is enclosed in parenthesis but the parenthesis can be

omitted if the argument is a variable or a numeric value.

RND (Argument digit location)
Numeric expression Numeric expression

Function:

Obtains the value of a given argument rounded off at the specified location.

Parameter:

Argument :

Location:

Explanation:

Numeric expression.

Numeric expression. Values below the decimal point

are discarded. Displays the exponent n when the loca­

tion to be rounded off is 1 on.
I location I < 100

1) Obtains the value of a given argument which is rounded off at the specified

location.

2J If RND (x ,y) is executed, x will be rounded off at 1 oY .
Rounds off at the third decimal place (10- 3)-+ RND (x, - 3)

Rounds off at the lOOs position (102)-+ RND (x, 2)

3) The parenthesis cannot be omitted .

6-4 Numeric Functions

REC

Function:

(r coordinate, e coordinate)
Numeric expression

Transforms polar coordinates (r , e) to rectangular coordinates (x , y).

Parameter:

r coordinate :

e coordinate:

Explanation:

Numeric expression. O <:;;,r < 10100

Numeric expression

DEG: tel< 1440°

RAD : te I < 8 7f rad

GRA: tel< 1600 gra

®

1) Transforms polar coordinates (r , e) to rectangular coordinates (x , y) using

the following relational_ expressions. x = r cos e
y = r sine

2) The x coordinate of (x , y) will be given as the output of the function, and

the value of the x coordinate will be assigned to variable X and the value of

they coordinate will be assigned to variable Y at the same time .

3) An error will occur if r < 0 .

4) The output values will correspond to the setting of the angle unit (DEG, RAD

or GRA).

Example:

10 CLEAR
20 MODE 4
-~ INPUT "r ='' , R
40 INPUT "t < 0 l=", T
50 X=RECCR,Tl
60 PR I NT"x='' ;X
70 PR I NT"Y='' ;Y

80 GOTO 30

* (x ,y) will be displayed if (r , e) is input.

153

154

CHAPTER 6 Command Reference

POL

Function:

(x coordinate,
Numeric expression

y coordinate)
Numeric expression

Transforms rectangular coordinates (x ,y) to polar coordinates (r, 8) .

Parameter:

x coordinate:

y coordinate:

Explanation:

Numeric expression }
lx l + lyl > 0 Numeric expression

®

1) Transforms rectangular coordinates (x , y) to polar coordinates (r , 8) using

the following relational expressions.

2) The r coordinate of (r , 8) is given as the output of the function, and the

value of the r coordinate will be assigned to variable X and the value of the 8

coordinate will be assigned to variable Y at the same time .

3) Calculation of the 8 coordinate will correspond to the angle unit (DEG, RAD

or GRA). The value of 8 will be given within the following range .

DEG: -180° < 8 ~ 180°

RAD : -7T rad< 8 ~ rr rad

GRA: -200 gra < 8 ~ 200 gra

4) An error will occur when lx l + ly l = 0.

Example:

10 CLEAR
20 MODE4
30 I NPUT''X = " ,A
40 I NPUT''Y = '' ,B
50 PRINT''r = ";POL<A,B
6 0 PR I NT "t = " ; D MS$< Y)
70 GOTO 30

* (r , 8) will be displayed if (x , y) is input.

FACT

Function:

Argument
Numeric expression

Obtains the factorial value for a given argument.

Parameter:

Argument: Numeric expression

6-4 Numeric Functions

®

The argument must take an integer value with the

range of (0 ~ argument ~ 69).

Explanation:

1) Obtains the factorial value (x !) of the argument x.

2) An error will occur if argument x contains fractions.

3) As a rule, the argument is enclosed in parenthesis but the parenthesis can be

omitted if the argument is a variable or a numeric value.

Example:

FACT 10~ 110!!

FACT 69 ~ 1ss1 l 1 = 711224524E '3S

155

156

CHAPTER 6 Command Reference

NPR (Value of n, value ofr)
Numeric expression Numeric expression

®

Function:

Obtains the permutations (nPr) for given values of n and r.

Parameter:

Value of n:

Value ofr:

Numeric expression } n and r are integer values with

Numeric expression the range of 0 ~ r ~ n < 1010 .

Explanation:
I

1) This function obtains permutations nPr (= (nn___·r)

2) An error occurs if n or r contains fractions.

Example:

NP R (5 , 3) ~ (sP3)

NP R (5 , 0) ~ (sPo) i

6-4 Numeric Functions

(Value of n, value of r) NCR Numeric expression Numeric expression
®

function:

Obtains the combinations (nCr) for given values of n and r.

Parameter:

Value ofn:

Value of r:
Numeric expression } n and r are integer values with

Numeric expression the range ofO ~ r ~ n < 1010 .

Explanation:
n !

1) Obtains the combinations nC r (= r ! (n _ r)

2) An error occurs if n or r contains decimals.

Example:

NCR(5,3)~ (sC3)

NCR (5 , 0) ~ (sCo) 1

157

158

6-5 Statistic Functions

EOX

Function:

Argument
Numeric expression

®

Obtains the estimated value of x for a value of y given as the argument in the

paired variable statistics of (x , y) .

Parameter:

Argument : Numeric expression giving the value of y.

Explanation:

1) Obtains the estimated value of x for the value of y according to the linear

regression expression y =a+ bx in the paired variable statistics of (x , y).

y- a
EOX(y) = - b -

2) The values of linear regression constant term a and linear regression coeffi­

cient b are determined by the statistical data .

3) The value of EOX(y) will be uncertain when b = 0 . The input value y is with

the range of ly I < I 0100 and the estimated value of x is with the range of

IEOX(y) I < 10100 when b ~ 0 .

4) As a rule, the argument is enclosed in parenthesis but the parenthesis can be

omitted if the argument is a variable or a numeric value.

EOY

Function:

Argument
Numeric expression

6-5 Statistic Functions

®

Obtains the estimated value of y for x a value of given as the argument in the

paired variable statistics of (x , y).

Parameter:

Argument: Numeric expression giving the value of x.

Explanation:

1) Obtains the estimated value of y for the value of x according to the linear

regression expression y =a+ bx in the paired variable statistics of (x , y).

EOY(x) = a + bx

2) The values of linear regression constant term a and linear regression coeffi­

cient b are determined by the statistical data.

3) Input value x is with the range of lxl < 10100 and the estimated value of y is

with the range of IEOY(x)I < 10100 .

4) As a rule, the argument is enclosed in parenthesis but the parenthesis can be

omitted if the argument is a variable or a numeric value .

159

160

6-6 Others

RAN =I*

Function:

Obtains a random number from 0 to 1.

Explanation:

1) Obtains a pseudo-random number from 0 to 1 within 10 digit mantissa.

0 < random number < 1.

Example:

Provides a random number with 1 digit from 0 to 9 .

INT(RAN#* 10)

Provides a random number with 1 digit from 1 to 6.

INT(RAN#* 6)+ 1

Provides a random number with 2 digits from 10 to 99.

INT(RAN#* 90)+ 10

6-6 Others

(Degree [,Minute [, Second]]) DEG Numeric expression Numeric expression Numeric expression

Function:

Converts a sexagesimal expressed by given degrees, minutes and seconds to a

decimal.

Parameter:

Degree:

Minute:

Second :

Numeric expression.

Numeric expression.

Numeric expression.

l'DEG (degree, minute, second) I< 10'00

Explanation:

l) Converts a sexagesimal expressed by given degrees, minutes and seconds to a

' decimal.

DEG ~a, b, c)= a+ 6b0 + 36c00

2) The minutes and seconds can be omitted , and they will be considered 0.

3) The parenthesis cannot be omitted.

Example:

DEG< 12,34,56) §l

10 INPUT A,B,C
20 PRINT DEG(A,B,C)
30 END

1 .-,
..:: I

161

162

CHAPTER 6 Command Reference

OMS$

Function:

(Argument)
Numeric expression

®

Converts a given decimal argument to a character string in the sexagesimal nota­

tion.

Parameter:

Argument : Numeric expression.

I Numeric expressionl < 10100

Explanation:

1) Converts a decimal given as a numeric expression to a character string in the

sexagesimal notation.

2) Although degrees, minutes and seconds will be displayed with the range of

I numeric expression I < 105 , the value of the numeric expression itself will be

displayed if outside this range . I
3) The result will be given as a character string.

Example:

OMS$(180/7l')~
OMS$ (4 5 . 6 7 8 l~

DMS$(99999.999l~

OMS$ (100000. 1 l~

10 INPUT A
20 $ = DMS$(Al
30 PRINT $
40 END

HEX$

Function:

(Argument)
Numeric expression

6-6 Others

®

Converts a given decimal argument to a 4-digit hexadecimal character string.

Parameter:

Argument: Numeric expression

- 32769 < numeric expression< 65536

Explanation:

1) Converts a decimal given as a numeric expression to a 4-digit hexadecimal

character string.

2) The value of a numeric expression given as the argument is handled as an

integer with decimals discarded .

3) When the value of an argument exceeds 32768, it will be handled as the value

after subtracting 65536.

<Example>

40000 will be handled as follows.

40000 - 65536 = - 25536

Example:

HEX$(10000)8

HEX$(65535 l 8
HEX$(-1) 8

10 INPUT"X='',X
20 PRINT "X=&H•;HEX$(X)
30 GOTO 10

163

164

CHAPTER 6 Command Reference

&H Character string ®

Function:

Converts a hexadecimal character string to a decimal value by placing this func­

tion at the beginning of a given hexadecimal character string.

Parameter:

Character string:

Explanation:

Hexadecimal numeric string. (Up to 4 digits)

-32768 ~ &H character string~ 32767

1) If placed at the beginning of a hexadecimal , it will be converted to a decimal

integer value . Although &H is shown as l function since it functions opposite

to HEX$, strictly speaking, it is not a function but is actually a hexadecimal

identifier .

2) Since the conversion result will be a decimal integer with the range of -32768

to +32767, &HFFFF, for example, will not indicate 65535 but - 1.

3) The 0 placed at the top of a hexadecimal and spaces in a hexadecimal charac­

ter string are disregarded.

<Example>

&HOOl 0 indicates 16 of a decimal number.

&HA u B indicates 171 of a decimal number.

&H u A indicates 10 of a decimal number.

(u means a space.)

4) An error (Error 2) will occur if a hexadecimal character string exceeds four

digits or if there is a character other than a hexadecimal in the character

string.

<Example>

&H 10000 -+Error 2 (Five digits)

&HAG

&HA#

-+Error 2 (G is not a hexadecimal)

-+Error 2 (#is not a hexadecimal)

Example:

10 CLEAR
20 READ H$
30 IF H$= "~d"THEN 80
40 M$= "& H "+H$
50 A=VAL(M$l
6 0 PR I NT M$; '' = '' ";A ;'' '--' : '--' '' ;
70 GOTO 10 Lt___
8 0 P R I NT H $; : B E E P : E ND Space

100 DATA 10,100,1000,7FFF
110 DATA 8000,ABCD,FFFF
120 DATA end

*Converts hexadecimals to decimals.

6-6 Others

165

166

6-7 DATA BANK Commands

NEW#

Function:

Erases memo data in the DATA BANK.

Explanation:

l) Erases all stored data.

2) Cannot be executed when a password is specified.

3) Can only be executed in the WRT mode .

Example:

~rn

NEW~0

~~

LIST#

Function:

Displays all memo data in the DATA BANK.

Parameter:

\

Outputs all memo data in the DATA BANK with record numbers attached.

Explanations:

1) Displays all memo data stored in the DATA BANK from the smallest record

number in the order stored.

2) The contents displayed are the record number and memo data.

3) Since the memo data will be displayed automatically in sequential order,

press the~ key to stop the display. Press the 0 key to resume the display.

4) In the PRT ON mode (~(2)), the memo data will be displayed succes­

sively at high speed and will be printed at the same time.

6-7 DA TA BANK Commands

5) Execution is not possible when a password is being specified. (An error will

occur.)

6) Cannot be used in a program.

7) Cannot be executed in the MEMO IN mode (~~).

Example:

L I S T:t:l=§"il

- ------ L I S T tt:-----~

... 510-01, TEI Fl . .JISIOM, .$330
2 510-02,RADI0,.$80
3 510-03, TAPE RECORDER, • $100
4 510-04,STEF.:E0,.$850
5 510--05,l.JIDEO RECORDER,.$750
6 510--06, DE:3K:TOP CALCULATOR,. $50
7 510-07, F'ERSOMAL COMPUTER, • $650
:3 E"ID

167

168

CHAPTER 6 Command Reference

SAVE#
Function:

["File name"]
Character string

Stores memo data in the DATA BANK on a cassette tape.

Parameter:

File name: 1 ~character numbers of character string~ 8 .

Can be omitted.

Explanation: ;

I) Stores all memo data in the DATA BANK on a cassette tape.

2) Since memo data cannot be stored with SA VE or SA VE ALL, always load

memo data with SA VE#.

3) If a password has been specified, storing is performed with this password .

Therefore, the same password must be specified when the loading is per­

formed by the LOAD# command.

4) Cannot be executed in the MEMO IN mode.

Example:

SAVE#~

SAVE#"CAS 10"~

6-7 DATA BANK Commands

LOAD:t:1: ["File name"] [, M]
Character string

Function:

Loads memo data in the DATA BANK from a cassette tape .

Parameter:

File name: 1 ~ character numbers of character string~ 8. Can be

omitted.

M: (If M is specified, additional memo data can be

loaded.)

Explanation:

I) In the case of LOAD# ["File name"]

a) Loads memo data in the DATA BANK from a cassette tape after erasing

all memo data currently stored in the DATA BANK.

b) Loads first memo data found on a cassette tape being played back if the

file name is omitted.

c) This cannot be executed in the MEMO IN mode.

d) This cannot be executed in a program.

2) In the case of LOAD# [' 'File name"] ,M

a) Loads additional memo I data in the DATA BANK from a cassette tape

following the memo data currently stored in the DATA BANK.

For b) to d), same as for LOAD#.

Example:

LOAD:i:t:~

L OAD:i:t:" CAS I 0 ''~

169

170

CHAPTER 6 Command Reference

READi:t= Variable name [, variable name] *

Function:

Reads memo data from the DATA BANK.

Parameter:

Variable name:

Explanation:

Numeric variable or character variable .

An array variable can also ibe used.

1) Sequentially reads stored data to a variable .

®

2) Only numeric type data can be read for a numeric variable . If character type

data are used, an error (Error 2) occurs.

3) After the necessary data are read by a READ# statement, the following data

are read by the next READ# statement.

4) When memo data in the DATA BANK are punctuated by ",",they are read

in the order in which they are written.

<Example>

DATA

No. 1 A,X , Y
No. 2 B,Z
No.3 C

•
Reading sequence

A-x-v-s-z-c

5) When datil to be read does not exist, an error (Error 4) occurs.

6) The data sequence to be read can be modified by RESTORE# (see page 172).

6-7 DA TA BANK Commands

7) When a space exists at the beginning of memo data in the DAT A BANK, it is

skipped.

<Example>

X, ._.Y,Z
L This space skipped.

8) When data is inside " ", the character string inside " "is read.

Example:

<Data>

No.1 1,2,3
No. 2 4,5,6
No.3 7,8,9
No.4 10,

<Program>

10 A=0
20 READ#$
30 IF $="q THEN 60
40 A=A+VAL < $)

,50 GOTO 20
60 PR INT "~x ='';A
70 END

*Reads numeric data from the DATA BANK to obtain a sum.
I

171

172

CHAPTER 6 Command Reference

RESTORE++ ["Searched character string"[[{0 }] ®
tt Character expression • 1

[{ Line number } JJJ
• # program area number

Function:

Searches memo data in the DAT A BANK and specifies the sequence of the data

to be read by READ#.

Parameter: I

Searched character string: Character expression . When a character string is used,

place it inside " ".

Line number:

Program area No.:

Explanation:

Numeric expression. 0 <line number< 10000

Numeric expression. 0 ~program area No.< 10

1) Searches memo data in the DAT A BANK and specifies the sequence of data

to be read by the following READ# statement.

2) The relationship between a parameter and data searching is as follows.

a) RESTORE#

When the searched character string and after are omitted, data are read

from the beginning by the following READ#.

b) RESTORE# "searched character string"

Memo data having the searched character string at the beginning is read by

the following READ#.

c) RESTORE# "searched character string", { ~}
When 0 is specified, it is the same as b).

When 1 is specified, the first data of the line that includes searched data is

read by the following READ# statement.

d) RESTORE# "searched character string", [{ ~ } J , {!#pine number N }
rogram area o .

When executing searching, it jumps to the specified line or a program area

if appropriate data does not exist.

* In b) and c), when appropriate data does not exist , an error (Error 4)

occurs.

6-7 DATA BANK Commands

* In d), when a branching line number does not exist, or when a program

does not exist in the program area , an error (Error 4) occurs.

*If a parameter is assigned, the appropriate data will be searched from the data

and on to be read by the next READ# statement. Enter RESTORE# :

RESTORE# "searched character string" when desiring to search from the first

data.

Example:

<Memo Data>

Record Smith, 03-347-4811, San Diego

Record 2 Jones, 075-351-1161, Princeton

Record 3 Williams, 06-314-2681 , Cleveland

Record 4 Edwards, 045-211-0821, Cambridge

<Program>

10 RESTORE:j::j:

20 GOSUB 1000

30 RESTORE:j::j:''J''

40 GOSUB 1000

50 RESTORE:j::j:" Cl'' , 1

60 GOSUB 1000

7 0 R E S T 0 R E :j::j:" Aa " ,

80 GOSUB 1000

90 END

} Displays memo data stored at the
beginning of the DATA BANK.

} Displays data having the first
character J.

}
Searches data having the first two
characters Cl and displays the first
data on that line.

, 2 0 0 } Jumps to line 200 if d.ata with the
first two characters Aa does not
exist.

2 0 0 B E E P : P R I NT " Memo End ''
2 10 END

1 0 0 0 RE AD:j::j:$: PR I NT$ } Subroutine that reads and dis-

1 0 1 0 RE TURN plays memo data.

< Execution Example >

RUN~

. .Jones

t=1 e rn c= E n d

173

174

CHAPTER 6 Command Reference

WRITE# [Data [, Data]*]
expression expression

Function: I

Rewrites or deletes memo data in the DATA BANK.

Parameter:

®

Data: Numeric expression or character expression. When a

character string is used, place it inside " "

Explanation:

1) Writes data in the record area currently specified oy RESTORE#.

2) Data are newly written without any relationship to data existence in the

appropriate record area.

3) When no data is specified, stored data in the record area are deleted.

4) When plural data exist, these data can be written on the same record area by

using "," for punctuation.

5) After the necessary data are written by the first WRITE# statement, the

following data are written by the next WRITE# statement.

6) When writing memo data, one step will be required in addition to the number

of characters.

Memo data ABC ~ XYZ

~
(26 characters) + 1 step = 2 7 steps

Example:

1 0 REM da,ta write

20 RESTORE:!:*
30 WRITE:l:*''X,Y,Z"

} Writes new memo data.

40 GOSUB 1000

50 PRINT'''-'
,,

1 1 0 REM data change

120 RESTORE:!:*
130 FOR J = 1 TO 3
140 WRITE:!:* STR$(J)
150 NEXT J

160 GOSUB 1000
170 PR I NT"'-'''
2 1 0 REM data clear
220 RESTORE:t:t:
230 WRITE:t:t:
240 RESTORE:t:t:
250 READ:t:t:$
260 END

1000 REM display sub
1010 RESTORE:t:t:
1020 FOR J =1 TO 3
1030 READ:t:t:$:PRINT$;
1040 NEXT J
1050 RETURN

<Execution Example>

6-7 DATA BANK Commands

} Deletes memo data.

Subroutine to display memo data.

E§)ITJ

NEW#§l
§"@~

RUN§l

} Erases all memo data in the DATA
BANK.

/

This error occurs when data is
deleted and no memo data remains in
the DATA BANK.

175

/

176

The DAT A BANK can hold all your

private memoranda such as names,

telephone numbers, addresses, dates,

etc. The object data can be speedily

retrieved from the large amounts of

stored data without the need for a

special program. Furthermore,

combined with a BASIC program,

you can use this function for an

expansive range of duties such as

schedules, totalizing, etc. The use

of the DATA BANK function is

explained together with actual ex­

amples. For details on the exclusive

commands (LIST#, RESTORE#,

READ#, WRITE#) for the DATA

BANK, refer to Chapter 6 "Com­

mand Reference".

178

7-1 Specifying the MEMO IN Mode

With its DAT A BANK function, this computer can be used as an "electronic

memo pad" in which data (memo data) can be conveniently written and from

which the necessary data can be retrieved by simple ke(operations.

In order to utilize the DATA BANK function, it will first be necessary to input

and store data. Specify the MEMO IN mode to input data to the DAT A BANK.

Pressing ~~ will specify the MEMO IN mode and the display will appear as

shown below.

MEMO IN mode display Record number

BUZZER DEG

Cursor

The symbol " ~~" at the upper center of the display shows that the MEMO

IN mode is currently specified. The number at the upper right is the record

number which indicates the memo data line.

The above display shows that the cursor is blinking at the left end with nothing

stored in the DATA BANK as yet and the computer is in the key-input waiting

state for Record 1. If the record number happens to be 5, it will mean that four

lines of memo data have already been stored in the DATA BANK.

7-2 Inputting Data

First input the names and telephone numbers of 10 people by assuming that

the DATA BANK function will be used as a private "electronic telephone

directory" .

BROWN 03-021 -1 234 SMITH 0899-02-1007
ELLIS 011-041-7386 SULLIVAN 078-039-7132
FOX 06-021-6602 WATTS , 0467-01-3569
JONES 052-031-6221 YOUNG 0425-01-0038
MILLS 03-063-2935 HOYT 03-054-4321

Start with entering the data for BROWN in the MEMO IN mode as follows.

Separate the name and telephone number by inserting a ","(comma) between

them.

Operation Display

BUZZER DEG

BUZZER

BUZZER DEG

E ~~ 0 ~=~ l···I :i 0 3 - _
BUZZER DEG

BROWN,03-021-1234_
BUZZ~R DEG

BROWN,03 -021-1234

If the ~key is pressed after compieting input of data, the cursor will disappear

and the BROWN's data will be stored in the DAT A BANK as the memo data of

record 1.

Press the~ key once more,.,-The display will be cleared and the record number

will change to 2 . The blinking cursor indicates that the computer is in the key­

input waiting state.

I ~ZZER DEG 2

179

180

CHAPTER 7 Convenient DATA BANK Function

Next. enter the ELLIS' data in Record 2.

Operation:

BUZZER DEG -, c

DEG -,
c

BUZZER DEG -, c

DEG
::.'

ELLIS,011 - 041-7386_
BUZZER -, c

ELLIS,011-041-7386

In the same manner, enter the names and telephone numbers from FOX to

HOYT in successive order. Do not forget to press the~ key at the end of each

telephone number.

Notes:

1. There is a reason for separating the name and telephone number with ","

(comma). Since the comma is a special symbol indicating separation of data

in one record in the DATA BANK and, since it will serve an important role

when retrieving the memo data later, always be sure to enter the comma.

2. In the above example , pressing the~ key again after storing one record with

the ~ key will clear the display and cause the record number to advance to

the next. When entering data continuously, however, it will not be necessary

to press the ~ key twice each time in this manner to clear the display. Data

will be stored by pressing the~ key once at the end of each record. When

the first character of next data is entered, the previous data will be auto­

matically erased from the display. In this case, the previous record number

remains on the display until the~ key . For example, the FOX's data can be

entered after the ELLIS' data by the following procedure.

Operation

(Completes input of
ELLIS' data .)

7-2 Inputting Data

BUZZER DEG -,
c

ELLIS,011-041 -73 86
BUZZER DEG -,

c

BUZZER DEG 2

BUZZER DEG 2

F Ci ;:.:; , 0 6 - 0 2 1 - 6 6 ~3 2 _
BUZZER DEG :• _,

~(Record number changes to 3.) FU;:.:;, 0 6-· 0 2 1 _ 6 6 0 2

When data input of all 10 persons is over, press the~ key once again to clear

' the display.

~(Completes input of
HOYT's data.)

~(Clears the display.)

\'

BUZZER DEG

'' ''

181

182

7-3 Displaying the Data Contents

To confirm the input data, display the data contents for the ten people now

stored. Specify the RUN mode by pressing~~-

./

Use the LIST# command to display the entire contents of the DATA BANK.

The data in each record will be displayed successively at approximately 1.5 sec.

intervals together with the record number.

Operation

BUZZER RUN DEG

BUZZ EA RUN DEG

1 BROWN,03-021-1234
BUZZER

2 ELLIS,011-041 -7386
BUZZER RUN DEG

3 FOX,06-021-6602

BUZZER RUN DEG

9 YOUNG,0425 -01-0038
BUZZER RUN DEG

10 HOYT,03-054-4321
BUZZER RUN DEG

Press the ~ key to stop the display temporarily for checking the contents. Press

the ~ key to resume the following display.

This enables checking of any input data errors.

*The LIST# command can also be executed in the WRT mode (8W).

7-4 Correcting Data

Assume that the contents of the DATA BANK were displayed with the LIST#

command and, upon checking, it was found that the telephone number of

JONES' in Record 4 was wrong.

Wrong 052-031-6211 -+ Correct 052-031-6221

In this cases, specify the MEMO IN mode and correct the data with the follow­

ing procedure .

Operation

BUZZER DEG

BUZZER DEG

ELLIS,011 - 041 - 7386
BUZZER DEG

JONES ,0 52-0 31-6211
BUZZER DEG ~ (Il[} tEDJI

JONES,052-0 31 - 6211_
BUZZER DEG

BUZZER

JONES,052 -031- 6221
BUZZER DEG

JONES,052~031-6 22 1
/

-. . -

-. ;o

·-:

·-:

·-:

·-:

Specifies the MEMO IN
mode.

Displays the memo data
in Record 1.

Advances to the next
record when §I key
is pressed.

Displays the memo data
in Record 4.

Correct the data.

Press the ~ key after
the correction.

If the MEMO IN mode is specified with the ~~ keys, the record number next

to the last record stored will be displayed (record number 11 in this case). Press

the ~ key to display the data in Record 1 in this state. The record number will

then advance each time the §I key is pressed.

183

184

CHAPTER 7 Convenient DATA BANK Function

Although the JONES' data in Record 4 is displayed in this manner, the cursor is

not displayed. If a cursor movement key (B or El) is pressed, the "mIJ" sym·

bol will appear and the cursor will be displayed. This state is the EDIT mode and

memo data can be corrected in this mode. Move the cursor with a cursor move­

ment key to the position to be corrected and, after makifg the necessary correc·

tions, press the~ key. The corrected data will then _be stored. (The "mIJ "

symbol will disappear.)

7-5 Retrieving (Searching} Data

With the DATA BANK function, data retrieval can be performed directly by
pressing the ~ key.

1) Searching with the ~ Key

If the ~ key is pressed in the RUN mode (~!@), the name, BROWN and his

telephone number in Record 1 will be displayed. (The "~ " symbol will

appear.)

Operation

BUZZER RUN DEG

BUZZER RUN DEG

BROWN103-021 -1234

If the ~ key is pressed again, only his telephone number will be displayed.

BUZZER

_..,. ~-,.-,; 1.-, 4
1·1 " - ,, .. l - .. "• . t. ·-' _, "'- .&... ·-

If the ~ key is pressed once again, the ELLIS' data in Record 2 will be dis­

played.

BUZZER RUN DEG 2

ELLIS,011 - 041 -7386

Each time the ~ key is pressed in this manner, data in the same record

separated with "," (comma) will be displayed (the first 24 characters when a

long data). When display of all data in one record is over, it will advance to the

next record.

185

186

CHAPTER 7 Convenient DATA BANK Function

After all memo data stored in the DATA BANK have been displayed, the dis­

play will be cleared, and the " IM™QJ " symbol will disappear. If the ~ key is

pressed here again, data in Record 1 will be displayed again.

(The data in Record 10 is
displayed by pressing the
~key repeatedly.)

(The "i!ill!OI" symbol dis­
~ appears and the cursor

blinks.)

(Displays the data in
Record 1 again.)

- - c::-4 4 -, 1 ~.:.i .) - 1::.1 ._! • - • -~· ..::.

BUZZER RUN DEG

BUZZER RUN DEG

I

BROWN,03 -021-1234

2) Quick Search with the~ Key

.n
•u

,,.,
''-'

Memo data searched and displayed with the ~ key can be advanced in record

units by using the~ key.

BUZZER RUN DEG

BUZZER RUN DEG

ELLIS,011-041-7386
BUZZER AUN DEG

F0/,06-021-6602

-. c

" -'

*The data in this example is displayed at a time because it is within 24 charac­

ters. If the data is long, however, the first 24 characters of the data will be

displayed .

7-5 Retrieving (Searching) Data

Even if the~ key is pressed when the last record stored is displayed, the last

data will then remain displayed .

RUN DEG ~ (The data in Record 10 is dis­
played by pressing the ~key
repeatedly.) HO '/T ~ [i3 ·- [i5 4-·432 1

~ (Display remains un­
changed.)

8UZZER

3) Backward Search with the ~Dill Keys

RUN DEG

I,-,
I !..I

'.~
I !..I

Press ~Dill to display a previous record when searching for a memo data with

the ~ key and~ key.

If backward search is repeated in record units with ~Dill similar to quick search

with the ~ key , the command will return to the data in Record 1. Record 1 will

then continue to be displayed even if the ~Dill keys are pressed again . This

operation can be repeated until the data in Record 1 is displayed.

(Data in Record 3 currently
being displayed.)

~Dill (Returns to Record 1.)

~ ,~, (Display remains un­
CillJ changed.)

4) Conditional Search

RUN DEG ~

FCJ::·::; 06 - 02 1-·6602
BUZZER RUN DEG

-,
~·

-,
c

Memo data are displayed in successive orde.r from Record 1 when searching with

the ~ key or~ key but time will be required to display the necessary data if

the amount of stored data becomes great .

In this case it will be convenient to use "conditional search" .

For example , we will search for a name starting with "S". Press CID~ .

187

188

CHAPTER 7 Conven ient DATA BANK Function

BUZZER RUN DEG

BUZZER • RUN DEG +

The SMITH's data in Record 6 will be displayed. If ~ is pressed again, the

SULLIV AN's data in Record 7 will be displayed. If ~ is pressed once again,

the display will be cleared and the cursor will blink. This means that there are no

more names starting with "S".

If there are multiple pertinent data, they will be displayed in the ascending order

of record numbers.

The specified condition need not be a single character as in the above but can be

longer character string. For example , if the 8 characters SULLIVAN are used as

the condition, data beginning with these 8 characters will be retrieved .

BUZZER RUN DEG

BUZZER RUN DEG

5) Additional Conditional Search

Assume that the JONES' data in Record 4 is currently being displayed as a result

of searching with the condition "J" specified . It will also be possible at this time

to make a new search of data after Record 4 by specifying an additional condi­

tion.

For example, search for a telephone number starting with an area number of 03

after Record 4. Press ~@)~~ .

7-5 Retrieving (Searching) Data

(Assuming that JONES' data
is being displayed by[I] ~)

(@~~~ (Specifies an addi­
tional condition.)

BUZZER RUN DEG

JONES, 052-031-6221
BUZZER RUN DEG

t:~300H006.3 ·•HO 2'33~;
BUZZER RUN DEG

Ci.}H• .. ~::154 432: 1
BUZZER RUN OEG

·-:

,-
~·

',-,
l!_.I

If !@~~~ are pressed as in the above, data starting with condition "03" will

be displayed after Record 4. If there are multiple data with condition "03 ", the

second corresponding data and after will be displayed each time the ~ key is

pressed.

If conditional search with condition "03" is performed in the above example

instead of the additional conditional search, the first data displayed will become

BROWN's telephone number in Record 1.

BUZZER RUN DEG ·-:

JONES,052-031-6221
BUZZER RUN DEG

(Simple conditional
search) ~;j .) t:J 11. ····· .1. 2 .3 4

Thus, the additional conditional search allows you to find a record satisfying the

initial condition and, after altering the condition, to retrieve data satisfying that

condition from the subsequent data. This function enables you to narrow down

the search by altering the conditi_on.

6) Confirming with the Cursor Movement Key

Telephone numbers only will be displayed if search is made by specifying the

condition "03". Use the cursor movement key El to confirm the name of the

person with this telephone number:

BUZZER RUN DEG

(@~~ (Conditional search) c1 3 -·- Ci 2 1 -- i 2 3 4
BUZZER RUN DEG

EJEJEJEJEJEJ BROWN,03-021-1234
189

190

CHAPTER 7 Convenient DATA BANK Function

The telephone number moves one space to the right each time the El key is

pressed and the name will appear from the left.

Operating ~~ instead of pressing the El key 6 times displays the data from

the beginning.

BUZZER RUN DEG

C13 .. "· t1.i:: 1 1234

If the contents in one record exceed 24 characters , it will not be possible to dis­

play these at one time . The El key can then be used to shift the display to the

left to bring the characters hidden on the right into view. Pressing ~~ will

cause the last 24 characters in the record to be displayed .

7-6 Erasing Data

Erasing memo data can be performed in the EDIT mode as in data correction

(see page 183).

1) To Erase Part of a Record

Display the desired. data in the MEMO IN mode and specify the EDIT mode by

pressing a cursor movement key. Then move the cursor to the character that you

wish to erase. Press~ to erase the character. After erasing unnecessary charac­

ter. After erasing unnecessary characters, be sure to press the ~key.

2) To Erase All Data in a Record

Display the desired record in the MEMO IN mode and specify the EDIT mode

by pressing a cursor movement key. Then clear the display by pressing the~

key. And press the ~ key.

All data in that record will be erased and the current record number will be auto­

matically assigned to the next record.

To erase all data stored In the DATA BANK, execute the NEW# command in

the WRT mode (~(1]).

The NEW# command should be executed with caution to avoid erasing any

important data in the DATA BANK.

191

192

7-7 Adding and Inserting Data

It is possible to add a new data next to the last record or to insert a new record

between stored records.

I) Adding Data

DEG

If the MEMO IN mode is specified, the computer will go into the key-input

waiting state and the record number will be displayed. Record number 11 is

displayed and the cursor is blinking in the above example. The computer is

waiting for input of data for Record 11. This also means that data for 10 records

have already been stored.

A new data will be stored in Record 11 by pressing ~ .

2) Inserting Data

To insert new data between stored records, first specify the MEMO IN mode and

display the record where the new data will be stored. Next, input the data to be

inserted and press §il~ . (Be careful here since pressing ~ only will cause the

data to be stored in a record next to the last record.)

For example, assume we wish to insert the HOYT's data between FOX's data in

Record 3 and JONES' data in Record 4. First, display the JONES' data in the

MEMO IN mode.

BUZZER DEG ·-:

JONES,052-031 -6221

Next, enter the initial character[[) of the HOYT. The previous display will be

cleared and "H" will be displayed. Continue entering the HOYT's data .

[[)

[Q]CTJCTJC!J~§JB~§@J
B~§J(g)W

BUZZER DEG HMQJ [JID

H_
BUZZER DEG ~ [JID

~ffi'/T - n\-nc:;4-4-::··::1· •- I•'- ·- -·- ,_1.&:,.. -

'i

'i

7-7 Adding and Inserting Data

Finally, press ~~

BUZZER OEG

HU;/T1 [1 .3-·054···432i

The HOYT's data is now stored in Record 4 and the record numbers of the

JONES' data and after have shifted down by one. Press the~ key and confirm

that the JONES' data is stored in Record 5.

[BUZZER OEG liID@ (]lL

JUNES1 052-0 31-6 221

The HOYT's data however, is also stored in Record 11 .

~~~~~~ 
(Displays the HOYT's data in 
Record 11.) 

BUZZER OEG 

Since this data is no longer needed, erase it by the following procedure. 

El (The EDIT mode is speci­
fied.) 

~ (Clears the display.) 

~ (Completes erasing. "m" 
disappears.) 

BUZZER OEG 

·: _, 

The HOYT's data is now inserted between FOX and JONES and the "electronic 

telephone directory" is now arr~ged in alphabetical order. 

193 



194 

CHAPTER 7 Convenient DATA BANK Function 

Examples of data output before and after rearranging are as follows: 

<Before rearranging> 

< After rearranging > 

1 BROWN,03-021-1234 
2 ELLI :3, 011-(141-73:~.; 
3 FIJ::<, 06-021-6602 
4 .JOt-JE:3, 052-031-6221 
5 MILL'.3:r 03-063-2935 
6 SMITH,0899-02-1007 
7 :3ULLI t..JA~l, 07EH339-7132 
:3 i.1.IATTS, 0467-01-3569 
9 '·i!JIJl-'ll::i, 0425-01-0038 

10 HO'/T,03-054-4321 

1 BROWN,03-021-1234 
2 ELLIS, 011-f141-7386 
3 FIJ::·(, 06-021-6602 
4 HO'/T, 03-1-354-4321 
5 .JOMES,052-031-6221 
6 MI LL:3, 03-063-2935 
7 SMITH,0899-02-1007 
:3 SIJLLil..JAN, 078-039-7132 
9 i.•.IATT'.3,0467-01-3569 

10 \'l]IJl-'ll::i' 0425-01-0038 



7-8 Searching Using a Program 

As long as the input data consists of only two items such as names and telephone 

numbers, it will not be particularly inconvenient to search by manual operation 

using the ~ key as described in the previous sections. However, if the amount 

of data increases and the input items also increase to three, four or more, the 

length of a record will exceed 24 characters. It will then become necessary to 

move the display with the ~ key or the cursor rrwvement key in order to call 
the desired data. 

This type of mass data can be handled easily if data is searched by using a BASIC 

program. 

We will introduce a search method with a program using the data mentioned in 

the previous section (see page 179). This method can also be applied easily to 

data of three items or more. 

• Outline of the Program 

If this program is executed , the request "Name?" is displayed. If we enter the 

name of the person whose telephone number is to be searched, the telephone 

number will be displayed if it is stored in the DAT A BANK. If it is not stored, 

"No Data!!" will be displayed. 

Since this program is for displaying only, specify the MEMO IN mode(§!!~) to 

enter the naines or telephone numbers. 

• Program List 

10 DIM Z$C5l 
20 RESTORE:j:j: 
30 BEEP INPUT "Name" , $ 
40 IF $="" THEN 30 

' 50 FOR J=1 TO 5 
60 Z$CJ)= MID$CJ*7-6,7l 
70 NEXT J 
80 F= 0 
90 RESTORE:j:j: Z$C 1 l+Z$C2l+Z$C3l+Z$C4l 

+Z$C5l,1,140 

195 



196 

CHAPTER 7 Convenient DATA BANK Function 

100 RE ADi:t $,$ 

1 1 0 F=1 
120 GOSUB 1000: PRINT $ 

130 GOTO 90 
"-

140 IF F=0 THEN PRINT 11 No Data ! II 

150 GOTO 20 
1000 FOR J=1 TO 3 
1 0 1 0 BEEP 1 : BEEP 0 
1020 NEXT J 
1030 RETURN 

197 bytes 

• Variables Table 

Variable name Contents 

J Control variable for the FOR - NEXT loop 

F Flag variable (F = 1 when the pertinent person exists. F = 0 if the 

pertinent person does not exist.) 

Z$(1) - Z$(5) Stores the name entered. 

$ For reading data 

• Execution Example 

Operation 

~ (@[BJ[ill[NJ~ 

[MJITJwwllil 

03-063-2935 
r·j,3rn e? 

t·j 0 D .3 t. .3 I I 

' 



7-9 Application to Tabular Calculations 

Vertical and horizontal tabular calculations as shown below are frequently 

required in practical calculations. Although this type of calculation was carried 

out using the array (see page 66), tabular calculations can be simplified further 

by considering the DATA BANK as being one large table. 

~ Product A Product B Product C Product D Horizontal 
total 

Branch X 5329 4280 3602 2310 

Branch Y 2682 6313 4203 1128 

Branch Z 5113 3229 5176 965 

Vertical to ta! 

• Outline of the Program 

Since' the size of the table will be requested when this program is executed, enter 

the number of horizontal items (m) and then the number of vertical items (n). 

Enter data; one column at a time vertically from the top. "Calculation" is dis­

played and calculation starts after all data are input. When calculation is over, 

the results are displayed in the order of vertical total and horizontal total. 

• Program List 

10 BEEP IN PUT " ( m x n) " , A, B : ERAS 
E F: DIM F(A+1,B+1) 

20 FOR C=1 TO A 
30 FOR 0=1 TO B 
40 PRINT "(";C;"\"; D;")"; 
50 BEEP INPUT F(C,D> 
60 $ ="N "+ STR$(0)+","+ STR$(F(C,0)) 
70 IF A=C THEN $ =$+",0" 
80 WRITE:t:I= $ 
90 NEXT D 

100 WRITE:t:I= "M"+ STR$(C)+",0" 
110 NEXT C 
120 PRINT "Calculation"; 
140 FOR C=1 TO B+1 
150 F(A+1,C>=0 

197 



198 

CHAPTER 7 Convenient DATA BANK Function 

160 NEXT C 
170 FOR D=1 TO A+1 
180 F(D,B+1 )=0 
190 NEXT D 
200 RESTORE# 
210 FOR C=1 TO A 
220 FOR D=1 TO B 
230 READ# $,F(C,D> \ 
240 F(A+1,D>=F(A+1,D>+F(C,D> 
250 IF A=C THEN WRITE# F(A+1,D> 
260 F(C,B+1 )=F(C,B+1 >+F(C,D> 
270 NEXT D 
280 READ#$: WRITE tt F(C,B+1) 
290 NEXT C 
300 PRINT 
310 RESTORE# 
320 FOR C=1 TO A 
330 RESTORE# "M" 
340 READ# $,E 
350 PRINT $;"=";E 
360 NEXT C 
370 RESTORE# 
380 IF A>1 THEN RESTORE# "M"+ STR$(A 

-1 ) 

390 READ# $,$ 
400 FOR C=1 TO B 
410 READ# $,E,E 
420 PRINT $;"=";E 
430 NEXT C 
440 BEEP : PRINT 
450 PRINT : END 

"OVER II 

500 bytes 



7-9 Application to Tabular Calculations 

• Variables Table 

Variable name Contents 

A Number of horizontal items in the table 

B Number of vertical items in the table 

c Control variable for a FOR - NEXT loop 

D Control variable for a FOR - NEXT Loop 

E For reading data 

F For calculating vertical total 

F(l) - The array for calculating horizontal total (Prepares number of 
vertical items in table.) 

$ For preparing writing data to the DATA BANK and for reading 
space by the READ#$. 

• Program Execution Examples 

Calculate the vertical and horizontal totals using the table on page 197. 

Operation 

~~IIDffi:Jllil ~ 

4 ~I (Inputs number of horizontal items.) 

3 ~ (Inputs number of vertical items.) 

5 3 2 g ~ (Inputs the value in the first 
vertical column.) 

2682~ 

\ 

-, 

I. 1 ·.· 1 ·; .' 
'· i .·. .2 ., ~· 

'---- - ------·-·----- -·--

Input data in the 2nd, 3rd and 4th columns in sequential order. After all data are 

input, "Calculation" will be displayed. When calculation is over, the following 

results will be displayed. 

199 



200 

CHAPTER 7 Convenient DATA BANK Function 

965~ L:aTc.1Jl .::ition 
(Displays vertical total of the 1st column.) M 1 = 1 3 1 2 4 

~ (Displays vertical total of the 2nd column.) M 2 = 1 .3 B 2 2 
~ (Displays vertical total of the 3rd column.) M 3 = 1 2 9 B 1 
~ (Displays vertical total of the 4th column.) fr14 = 4 4 0 3 

t--~~~~~~~~~~~~ 

~ (Displays horizontal total of the 1st line.) t·~ 1 = 1 5 5 2 1 
~ (Displays horizontal total of the 2nd line.) 

~ (Displays horizontal total of the 3rd line.) 

~(Calculation is over.) 

~ 

t·42= 14326 
t·~ 3 = 1 4 4 ::: .3 
ri 1 1 i- i:;= 
·-· ••• !.- : •, 

*Since all data are stored as memo data in the DAT A BANK with this program, 

it will be necessary to first execute the NEW# command in the WRT mode 

when executing this program using new data. 



7-10 Combining with the Function Memory 

A practical method of using the DATA BANK function is to use it in combina­

tion with the Function Memoiy . Store formulas and equations in the DAT A 

BANK and press the ~ key to call the desired formula or equation. And 

calculate by storing the retrieved formula in the Function Memory by pressing 

the ~key. 

Assume that the following formula and equation are stored in the DAT A BANK. 

1 QUADRATIC EQUATION 
r X=<-B+SQR(Bf2-4*A*Cll/(2*A>: X=<-B-SQR<B 
2 

t2-4*A*Cll/(2*A> 

3 HERON 

4 s·s·=<A+B+Cl/2:S=SQR<S*<S-A>*<S-B>*<S-C)) 

A formula to calculate the root of a quadratic equation and Heron's formula are 

stored in the DATA BANK. 

Now, calculate the root of the quadratic equation. Press (Q]~ to search the 

quadratic equation. 

After confirming the name, press the~ key and the calculation formula is dis­

played. 

IX=(-B+SQR(Bt2-4+A+C))/(21 

Then store the calculation formula in the Function Memory. 

201 



202 

CHAPTER 7 Convenient DATA BANK Function 

Now we are ready to calculate. 

Input 2 for a, -3 for band -10 for c as an example. 

§] 

-30 
20 
-10~ 

~ 

This function is highly convenient since calculating formulas stored in the DAT A 

BANK can be applied to the Function Memory as they are. 

Note: 

When storing a formula name and calculating formula in the DATA BANK, do 

not store them in one record. Store the calculating formula in the record follow-
1 

ing the record in which the formula name i's stored. 





204 

Character Code Table 

tSpareJ + - * / t ! " tt: $ > >- - ::: < ~ -
Numerals 0 1 2 3 4 5 6 7 8 9 Tl ) ( -. E E 

Capital A B c D E F G H I J K L M N 0 p 
letters Q R s T u v w x y z y cJ 

Small a b c d e f g h i J k I m n 0 P] 
letters q r s t u v w x y z 

Symbols ? . . 
• • . 

Graphic 0 I: 0 !:::. @ x • - • • ... µ 0 ! -
symbols % ¥ D [ & ' J • \ ::::: 

- . .·.· . 

*The characters and symbols in the above table are lined in sequence, with the 

space being the smallest and t being the largest. (" :;:;: " can be displayed by 

pressing ~El in the extension mode.) 



Numeric Functions 

Name of 
function Format 

Trigonometric SIN (Numeric 

function 

Inverse 

trigonometric 

function 

Hyperbolic 

function 

Inverse 

hyperbolic 

function 

Square root 

Cube root 

Power 

Exponential 

function 

expression) 

* hereafter X 

COS (X) 

TAN (X) 

ASN (X) 

ACS (X) 

ATN (X) 

HYP SIN (X) 

HYP COS (X) 

HYP TAN (X) 

HYP ASN (X) 

HYP ACS (X) 

HYP ATN (X) · 

SQR (X) 

CUR (X) 

XtX 

EXP(X) 

\' 

sin 

cos 

tan 

sinh 

co sh 

tanh 

Function and input range 

IXI < 1440° (Brr rad , 1600gra) 

IXI < 1440° (Brr rad, 1600gra) 

IXI < 1440° (Brr rad, 1600gra) 

except when IXI is odd multiple of 

90°(rr/2 rad, lOOgra) 

IXI ;:;; 1, -90°;:;; ASN;:;; 90° 

lrad: -rr/2 ;:;; ASN ;:;; rr/ 2, 

gra : -100;:;; ASN;:;; 100) 

IXI;:;; 1, 0° ;:;; ACS;:;; 1B0° 

(rad : 0;:;; ACS;:;; rr, gra: 0;:;; ACS ;:;; 200) 

-90°;:;; ATN;:;; 90° 

(rad: - rr/2 ;:;; ATN;:;; rr/2, 

gra: -100 ;:;; ATN;:;; 100) 

IXI ::::; 230.25B5092 

IXI ;:;; 230.25B5092 

IXI < 10100 

sinh- 1 IXI < 5 x 1099 

cosh- 1 1 ;:;; X < 5 x 1099 

tanh- 1 IXI < 1 

IXl < l0100 

xY x < 0 -. y : natural number 

-101 00 < x::::; 230.25B5092 

205 



Numeric Functions 

Name of Format Function and input range function 

Common LOG (X) log 10 x X > O 

logarithm I 

Natural LN (X) logex X > O 

logarithm 

Integer INT(X) [x] Gives maximum integer not exceeding 

X (equal to Gaussian function [x]) 

Fraction FRAC (X) FRAC Gives decimal portion of X 

Absolute ABS (X) lx l Gives absolute value of X 

value 

Sign SGN (X) sgn x 1 when X > 0 

0 when X = 0 

-1 when X < 0 

Rounding off RND (X, Number RND( Gives the value of X which is rounded 

of digits)* off at the specified digit. 

I Number of digitsl < 100 

Random RAN# RAN # Generates a 10-digit random number. 

numbers 0 < RAN# < 1 

1( 1( 1( Gives approximate value of ratio of circle 

circumference to diameter. 

Decimal-+ OMS$ (X)* OMS$ ( Converts decimal number given as 

sexagesimal X into sexagesimal character string 

conversion in degrees, minutes and seconds. 

IXI < 10' 

Sexagesimal--+ DEG (deg. [, min. DEG( DEG (x, y, z) = x + y/60 + z/3600. 

decimal [,sec.]])* IDEG (x, y, z)I < 10 100 

conversion 

Decimal__, HEX$ (X)* HEX$( Converts value of X into 4-digit 

hexadecimal hexadecimal character string. 

conversion -32769 < x < 655 36 

206 



Numeric Functions 

Name of Format Function and input range function 

Hexadecimal 

I 

&H Hexadecimal &Hx Character string contains hexadecimal 

-+decimal character string number within 4 characters. 

conversion 

Factorial FACT (X) x' 0 ~ X ~ 69 (0 and positive integer) 

Permutation NPR (n, r)* nPr O~r~n<l010 

(0 and positive integer) 

Combination NCR (n, r)* nCr O ~ r ~ n < l0 10 
- -

(0 and positive integer) 
t------~ 

Rectangular POL (X, Y)* POL ( IXI < 10100 , IYI < 10100 , IXI + IYI * 0 

-+ polar X, Y: numeric r is given as a function value for assign-

coordinate expressions ment to variable X while value of e is 

transformation assigned to variable Y. 

Polar_, REC (r, e)* REC ( 0 ~ r < 10100 , 16 1 < 1440° (8rr rad, 

rectangular r, e: numeric 1600 gra) 

coordinate expressions Gives x as a function value for assign-

transformation ment to variable X while value of y is 

assigned to variable Y. 

Note: 

In the case of asterisked functions, parameters must be parenthesized. 

*Certain combinations or permutations may cause errors due to overflow 

during internal calculations. 

/ 

207 



Error Messages 

Error code/ Cause Countermeasure Meaning 

Error 1 •Unable to write programs or ex- • Erase unnecessary programs 

Memory over pand variables due to insufficient with the NEW command or 

or system capacity of free area. redu{e the number of 

stack over variables. 

•Calculating area (stack) unable •Separate and simplify the 

to hold formula since the fdrmula. 

formula is excessively complex. 

•Unable to write data in the data •Clear the array 

bank since capacity is insuffi-

cient. 

•Nine or more arrays were 

declared. 

Error 2 • Format error in the program or •Correct the error in the input 

Syntax error formula. program. 

•The formats of left side and right 

side in the assigned statement 

differ. (Such as character type 

and numeric type) 

I 
•Attempted to read character in •Change numeric variable to 

a numeric variable with READ/ character variable or check for 

READ#. character (including space) in 

the DAT A statement. 

•Character string operation ex- • Shorten the character string. 

ceeded 6 2 characters. 

Error 3 •When the calculation result of a •Correct the formula or the 

Mathematical formula exceeds 10' 00. (Over- data. 
error flow) 

•When arguments are outside the •Check the data. 
input range of numeric func-

tions. 

•When the results are uncertain or 

impossible. (Attempted to divide 

with a 0) 

208 



Error Messages 

Error code/ Cause Countermeasure Meaning 

Error 4 •No jump destination for the •Specify the correct jump 

Undefined GOTO or GOSUB statements. destination. 

error •There is no data to be read with •Write data 

READ/READ# or RESTORE#. 

• The line number specified with •Correct the line number. 

RESTORE does not exist. 

Error 5 •When the argument is outside •Correct the argument error. 

Argument the input range of commands 

error and functions requiring argu-

ments. 

•The subscript in the array is out- •Change the subscript. 

side the input range. 

• Attempted to specify two arrays • Change the array name. 

with the same name but differ-

en t subscripts. 

Error 6 • Attempted to use a variable that •Expand the variables with the 

Variable error was not added . DEFM statement. 

•Attempted to use the same varia- • Change the variable name for 

ble name for a numeric variable the numeric variable and 

and a character variable. character variable. 

•Attempted to use an array name 
( 

• Use after declaring the array 

subscript that was not declared. or correct the array name 

subscript. 

Error 7 •When the RETURN statement •Correspond GOSUB -

Nesting error is used other than when execut- RETURN or FOR - NEXT 

ing a subroutine. correctly. 

•When the FOR statement and 

NEXT statement do not corre-

spond or when the variable of 

th!' NEXT statement does not 

match that of the FOR state-

ment. 

•When the subroutine nesting •Correct the subroutine or 

(calling a subroutine from a FOR loop nesting level with-

subroutine) exceeds eight levels. in the range. 

209 



Error Messages 

Error code/ Cause Countermeasure Meaning 

Error 7 •When the FOR loop nesting 

Nesting error (inserting a loop within a loop 

with nesting form) exceeds four 

levels. / 

•The CLEAR statement was used •Move the CLEAR statement 

in the FOR - NEXT loop. outside the FOR - NEXT 

statement. 

Error 8 •When the following occurs with •Clear the password. 

Protect error the password specified. 

1) Input of a different password 

2) Execution of a prohibited 

command 

3) Editing of a program 

4) Loading programs with differ-

ent passwords. 

5) Inputting data in the data 

bank 

6) Calling data from the data 

bank 

Error 9 •SA VE, SA VE# or PUT command · •Connect a tape recorder. 

Option error was executed without an 

interface. 

•When the signal input with the •Reduce the playback volume 

LOAD, LOAD# or GET of the tape recorder. 

command is erratic and cannot •Set the tone control of the 
be loaded. tape recorder to middle posi-

tion. 

•A printer is not connected. •Change the cassette tape. 

• Clean the head of the tape 

recorder. 
•When the printer is not suffi- •Charge the printer. 

ciently charged. 

•Paper jammed in the printer. •Remove the paper jammed in 

the printer. 

210 



Specifications 

Type: 
FX-730P 

Fundamental Calculation Functions: 
Negative numbers, exponents, parenthetical addition, subtraction, multiplica­
tion and division (with priority sequence judgement function - true algebraic 
logic). 

Built-in Functions: 
Trigonometric/inverse trigonometric functions (angle units of degrees/radians/ 
grads), hyperbolic/inverse hyperbolic functions, logarithmic/exponential 
functions, square roots, cube roots, powers, conversion to integer, deletion 
of integer portion, absolute values, signs, designation of number of significant 
digits, designation of number of decimal places, decimal *+ sexagesimal 
conversions, decimal *+ hexadecimal conversions, rectangular *+ polar coordi­
nate transformations, factorials, permutations, combinations, rounding, 
random number generations, 7r. 

Statistical Calculation Functions: 
Number of data , sum of x, sum of y , sum of x 2 , sum of y 2 , sum of x ·Y, 
mean of x, mean of y, standard deviation of x (2 types), standard devia­
tion of y (2 types), linear regression constant term, linear regression co­
efficient, correlation coefficient, estimated value of x, estimated value of y. 

Commands: 
INPUT, PRINT, GOTO, ON""'. GOTO, FOR~ TO~ STEP~ NEXT, IF~ 
THEN, GOSUB, ON "' GOSUB, RETURN, READ, DATA, RESTORE, 
STOP, END, RUN, LIST, LIST V, LIST ALL, MODE, SET, CLEAR, NEW, 
NEW ALL, ERASE, DIM, DEFM, PASS, REM, BEEP, LET, SAVE, SAVE 
ALL, LOAD, LOAD ALL, PUT, GET, VERIFY, NEW#, LIST#, LOAD#, 
SAVE#, READ#, WRITE#, RESTORE#, STAT, STAT CLEAR, STAT LIST. 

Program Functions: 
DMS$, KEY$, CSR, LEN, MID$, STR$, VAL, HEX$ . 

Calculation Range: 
± 1 x 10- 99 ~ ± 9 .999·999999 x 1099 and 0. Internal operation uses 12-digit 
mantissa. 

Program System: 
Stored system 

Program Language: 
BASIC 

211 



212 

Speci fications 

RAM Capacity: 
Standard 7,520 bytes (system area: 672 bytes) (15,712 bytes with the RP-8 

RAM expansion pack) 

Number of Program Areas: 
Maximum 10 (PO through P9) 

Number of Variables: I 

26 fixed variables, exclusive character variable and array variables. 

Number of Stacks: 
Subroutine: 8 levels 
FOR~ NEXT loop : 4 levels 
Numeric values: 6 levels 
Operators: 12 levels 

Number of Display Digits: 
10-digit mantissa (including minus sign) and 2-digit exponent 
Display contents: BUZZER, EXT,§]. III. RUN, WRT, DEG, 

RAD,GRA,DEFM,IMEMOl,[lli].IEDITI, 
TRACE ON, PRT ON, STOP 

Display Elements: 
24-digit dot matrix liquid crystal display 

Main Components: 
C-MOS VLSI and others 

Power Supply: 
2 lithium batteries (CR2032) for the mainframe 
1 lithium battery (CR1220) for memory backup 

Power Consumption: 
Maximum 0.07W 

Battery Life: 
1) Continuous program execution: Approx. 86 hours 
2) Continuous display of 5555555555 at 20°C (68°F): Approx. 205 hours 

5.5 months when unit is used 1 hour per day. 
*Note : 1 hours includes 10 minutes of condition 1) and 50 minutes of 

condition 2). 
Memory protection battery : Approx. 2 years (with main batteries installed) 

Auto Power-off: 
Approximately 6 minutes 

Ambient Temperature Range: 
0°C to 40°C (32°F to 104°F) 



Dimensions: 
12.SH X 165W X 77Dmm 
(W'H X 60.''W X 3"D) 

Weight: 
139 g ( 4.9 oz) including batteries. 

I 

Specifications 

213 



Index 

A DEG 161 

&H 164 Degrees 8 

ABS 150 Delete key 7 

ACS 145 DIM 133 

ALL RESET button 10 OMS$ 162 

Angle unit 8 
I 

Argument 144 E 

Array variables 57, 133 Edit 101 
ASCII 18 EDIT mode 191 
ASN 145 END 108 
ATN 145 Engineering 7, 35 

EOX 158 
B 

EOY 159 
BASIC 51 Equal key (=) 6 
BEEP 130 ERASE 135 
Beep Sound 130 Error 67 
Bug 67 Error code 67 
BUZZER symbol 16 Error message 20, 67 

Estimated value 42, 158 
c Exclusive character variables 57, 126 

Character expression 98 EXP 148 

Character Functions 140 Exponent 6, 21 
Character variables 57, 111 Exponent display 21 

CLEAR 107 Expression 98 
Comparison expression 118 Extension mode 5 
Control variable 119 
Correlation coefficients 40 F 

cos 144 FACT 155 
CSR 115 Factorial 26, 155 
CUR 149 File name 75, 105 
Cursor 6, 16 FOR-TO- [STEP] NEXT 119 
Cursor movement keys 6 FRAC 152 

Free area 53, 62 
D Function key 3,27 

DATA 123 
DATA BANK Commands 166 G 

Debugging 67 Gaussian function 25, 151 
Decimal portion 31 GET 128 
DEFM 131 

214 



Index 

GOSUB 121 LOG 148 

GOTO 116 Loop 120 

GRA (grades) 8, 144 
M 

H 
Main routine 65 

Hexadecimal number 32 Mantissa 23 
HEX$ 163 Manual operation 24 
HYPACS 147 MEMO IN mode 8, 178 
HYPASN 147 Message 48, 111 

HYPATN 147 MID$ 141 
HYPCOS 146 MODE 8, 136 
HYPSIN 146 Multistatement 110 
HYPTAN 146 

N 

NCR 157 
IF - THEN 118 Nesting 69, 120 
INPUT 111 NEW [ALL] 99 
Insert key 7, 19 NEW# 166 
INT 151 NPR 156 
Integer portion 31 Null 107, 113 

Number of bytes 53,64 
K Number of decimal places 34, 139 

KEY$ 113 Numqer of significant digits 34, 139 
Numeral keys 3 

L Numeric expression 98 
Numeric variables 57, 111 

LEN 140 
LET 109 0 
Line number 52, 64 
Linear regression coefficient 41, 158 ON - GOSUB 122 

Linear regression constant term 41, 158 ON-GOTO 117 

Linear regression expression 41, 158 One-variable statistics 39 

LIST 101 
Output element 114 

LIST# 166 
LISTV 101 

p 

LN 148 Paired variable statistics 39 
LOAD [ALL] 106 Parameter 98 
LOAD# 169 

215 



Index 

Parity check 107 Simple variables 57 
PASS 103 SIN 144 
Password 103 SQR 149 
Peripherals 9, 72 Standard deviation 38 
Permutation 26, 156 STAT 137 
POL 154 STAT CLEAR 137 
Polar coordinate 33, 153 STAT LIST 138 
PRINT 114 Statements 52 
PRINT mode 8, 80 Statistical data ~'- 36 
Priority Sequence 23 STOP 108 
PUT 126 STR$ 143 

Subroutine 65 
R 

RAD (radians) 8, 144 T 

RAN# 160 TAN 144 
Random numbers 25, 160 TRACE Mode 71 
READ 124 
READ# 170 v 
REC 153 

VAL 142 
Rectangular coordinate 33, 153 

Variable Expansion 60, 131 
Regression curve 41 

Variables 22, 57 
REM 110 

VERIFY 107 
RESTORE 125 
RESTORE# 172 w 
RETURN 122 
RND 152 WRITE# 174 

RUN 100 WRTmode 8,54 

RUN mode 8, 16,55 

s 
SAVE [ALL] 105 
SAVE# 168 

SET 139 

Sexagesimal 25,31,161 

SGN 150 

216 



GUIDELINES LAID DOWN BY FCC RULES 
FOR USE OF THE UNIT IN THE U.S.A. (not 
applicable to other areas). 
This equipment generates and uses radio frequency energy 
and if not installed and used properly, that is, in strict 
accordance with the manufacturer's instructions, may 
cause interference to radio and television reception. It has 
been type tested and found to comply with the limits for 
a Class B computing device in accordance with the speci­
fications in Subpart J of Part 15 of FCC Rules, which are 
designed to provide reasonable protection against such 
interference in a residential installation. However, there is 
no guarantee that interference will not occur in a partic­
ular installation. If this equipment does cause interference 
to radio or television reception, which can be determined 
by turning the equipment off and on, the user is en­
couraged to try to correct the interference by one or 
more of the following measures: 

reorient the receiving antenna 
relocate the computer with respect to the receiver 
move the computer away from the receiver 
plug the computer into a different outlet so that com­
puter and receiver are on different branch circuits. 

If necessary, the user should consult the dealer or an 
experienced radio/television technician for additional sug­
gestions. The user may find the following booklet pre­
pared by the Federal Communications Commission help­
ful: "How to Identify and Resolve Radio-TV Interference 
Problems". This booklet is available from the US Govern­
ment Printing Office, Washington, D.C., 20402, Stock No. 
004-000-00345-4. 

217 






