
Unit 2. Final exercise

Service and Process Programming

Arturo Bernal
Nacho Iborra

IES San Vicente

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view
a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/4.0/

LinkTracker

http://creativecommons.org/licenses/by-nc-sa/4.0/

Index of contents

Unit 2. Final exercise...1

1.Introduction and first steps..3
1.1.Setting up the project..3

2.Class structure..4
2.1.The WebPage class..4
2.2.FileUtils class..4
2.3.LinkReader class...4
2.4.Other useful classes..5

3.The JavaFX application..6
3.1.Designing the main view...6
3.2.How should it work?..7

4.Optional improvements...10
5.Evaluation rules..11

5.1.Compulsory part..11
5.2.About the optional improvements...11

Service and Process Programming – Unit 2. Final exercise 2

1. Introduction and first steps
In this final exercise you are asked to implement a JavaFX application that handles
multiple threads to access remote web pages and gather all the links found in them. The
appearance of the application will be more or less like this:

1.1. Setting up the project

We are going to create a JavaFX project (FXML application), called LinkTracker. Once
the project is created, inside the Source Packages section, create the following packages
and subpackages:

• linktracker package, which will be our main package with the JavaFX main class
and controllers

• linktracker.model package, to store our model (WebPage class, as explained later)

• linktracker.utils package, to store some useful classes

Service and Process Programming – Unit 2. Final exercise 3

Carla
Lápiz

2. Class structure
Besides the JavaFX main application with the FXML file and controller (we will see them in
next section), we are going to need some additional classes to store the information about
the web pages.

2.1. The WebPage class

Add a new class inside the linktracker.model package called WebPage. This class will
have the following attributes:

• The web page name (a String, such as "I.E.S. San Vicente")

• The web URL (another String)

• The list of links gathered from this page (a List of Strings)

Besides, we will add a constructor with the page name and URL (the list of links will be
completed later, after creating the object). Finally, add the getters and setters for each
attribute.

2.2. FileUtils class

In order to get the web page list to process, we are going to create a class called FileUtils
in the linktracker.utils package. This class will have a static method called loadPages, that
will receive a Path as a parameter, and will return a list of WebPage objects:

static List<WebPage> loadPages(Path file)

2.2.1. Web pages file structure

The file passed to loadPages method as parameter will be a text file with the following
structure:

page_name;url

For instance:

I.E.S. San Vicente;https://iessanvicente.com

Alicante University;https://www.ua.es

...

where the attributes are separated by ';'

2.3. LinkReader class

You will be provided with this class. It contains a public, static method called getLinks,
which receives a URL as parameter. Internally, this class connects to this URL, parses its
content and gets a list of all the links ("a" tags) contained in this page. So you don't have to
care (for now) about how to get the links from a remote URL. Just add this class in your
linktracker.utils package.

Service and Process Programming – Unit 2. Final exercise 4

Carla
Lápiz

Carla
Lápiz

Carla
Lápiz

Carla
Lápiz

Carla
Lápiz

Carla
Lápiz

Carla
Lápiz

2.4. Other useful classes

Although it is not compulsory, it may be useful to add some other classes. For instance, a
class called MessageUtils (in the linktracker.utils package) to show different Alert
messages. It could have these static methods:

• static void showError(String message) to show error messages

• static void showMessage(String message) to show information
messages

• ...

You can add as many classes as you need inside this package.

Service and Process Programming – Unit 2. Final exercise 5

3. The JavaFX application
Let's create the JavaFX application classes. Follow these steps:

1. The JavaFX Main Application will be called LinkTracker inside linktracker package.

2. There will be an FXML file called FXMLMainView.fxml with its associated controller
(FXMLMainViewController.java). Both files can be placed in the linktracker
package, as you did with the main application.

3. Make sure that your LinkTracker main class loads the contents from the FXML file.

3.1. Designing the main view

Use now Scene Builder to design the main scene and get an appearance similar to this:

You can use a BorderPane layout (for example) to arrange all the elements:

• A MenuBar in the top of the scene. It has two menus: File and Process.

◦ Within File menu you must add two MenuItems: one called "Load file..." and the
other one called "Exit".

◦ Within Process menu you must add two more MenuItems, called "Start" and
"Clear", respectively.

• Place a list view in the left side to load a list of web pages, and another one in the
right side to load a list of links for a given web page.

Service and Process Programming – Unit 2. Final exercise 6

Carla
Lápiz

Carla
Lápiz

Carla
Lápiz

• Place some labels in the center, to show some information about the process:

• Total pages → Pages loaded from the file.

• Processed → How many pages have been processed (threads finished)

• Total links → How many links have been found in all pages.

Remember to set an fx:id to each element that may need to be accessed from the
controller: menu items, list views and labels

3.2. How should it work?

At the beginning, the application must be shown as you can see above, and when we
choose some given menu items, it has to answer to this event.

3.2.1. Loading a file

If we choose "Load file..." menu item from File menu, then a FileChooser dialog must
appear, and then we can choose a text file with the format specified in subsection 2.2.1.
As soon as we choose the file, then we must call FileUtils.loadPages method to load a list
of WebPage elements from that file. Then, it must show an information dialog message
telling how many web pages have been loaded from the file, and update the corresponding
label in the main view:

3.2.2. Starting the process

If we click on "Start" menu item from Process menu, then we must launch as many threads
as web pages loaded from the file. If no web page has been loaded yet, then you must
show an error message:

There must be an Executor to handle all the threads. Use a ThreadPoolExecutor so you
can check anytime how many tasks (threads) have finished:
(ThreadPoolExecutor)Executors.newFixedThreadPool(

Runtime.getRuntime().availableProcessors());

Every task should be a Callable which receives the WebPage object to process and
returns it again when the urls have been loaded. Use executor.submit(Callable) to
launch every thread (invokeAll would freeze the main thread) and add the returned
Future<WebPage> object to a list.

Service and Process Programming – Unit 2. Final exercise 7

Carla
Lápiz

Inside that task, get the links from the current webpage (see LinkReader class), update
the “total links” variable by adding the number of links found (use an atomic variable)
and return the web page with the list of links set.

3.2.3. Controlling progress

Create also a JavaFX ScheduledService that will run every 100ms. This service will return
if the executor has finished.

Every time the service runs, it will update the “Processed” and “Total links” labels (only the
numbers). Also, when you detect that all tasks have finished, get the WebPage objects
from the Futures and add them to the ListView.

Important: Do not use Platform.runLater. Instead use the service’s onSucceeded event
to update variables in the main thread.

Example of application processing web pages:

Example of final result:

Service and Process Programming – Unit 2. Final exercise 8

When we click on any web page from the left list, then its list of links must be shown in the
right list:

3.2.4. Clearing the process

If we choose the "Clear" menu item from Process menu, then all the lists (left list, right list
and internal web page list, if any) and label numbers must be cleared, so that we can start
a brand new process from scratch.

3.2.5. Exiting the application

Finally, if we choose the "Exit" menu item from the File menu, we must close the
application.

Service and Process Programming – Unit 2. Final exercise 9

4. Optional improvements
• Use a ConcurrentLinkedDeque to store WebPages that have finished

◦ When a page finishes loading links, add that WebPage object to this concurrent
queue.

◦ After every time the ScheduledService runs, add the elements from this
concurrent collection to the left ListView. This way every time a page finishes
loading you will see it appear on the list.

• Use CompletableFutures instead of Callables + Executor for the tasks

◦ As there is no executor, to know how many tasks have finished, check the size
of the ConcurrentLinkedDeque where the finished pages are.

◦ When a CompletableFuture finishes loading a web page links, return the web
page and in another chained task (use thenAccept for example), update the
total number of links and add that WebPage to the ConcurrentLinkedDeque
collection. (First task → get links, Second task → Update total number and add
the WebPage object).

Service and Process Programming – Unit 2. Final exercise 10

5. Evaluation rules

5.1. Compulsory part

To get your final mark, the following rules will be applied:

• Class structure (model and utils packages), with the WebPage and FileUtils classes
with the corresponding code, and every other additional useful class that you may
need: 1 point.

• JavaFX application layout, similar to the one shown in previous figures: 0,5 points.

• Loading web pages from the text file when clicking on the File > Load file... menu
item, and showing an information dialog with the total amount of web pages
processed: 0,5 points

• Starting the process when clickin on Process > Start menu item:

◦ Creating a task for each web page that gets the list of links and updates the total
number of links: 2 points

◦ Defining an Executor and launching the threads: 1 point

◦ Checking the executor and updating the view with a ScheduledService
(including getting the WebPage objects when everything finishes): 2,5 points

• Showing the links in the right list when you click on a web page: 0,5 points

• Showing error messages whenever something can't be done (for instance, starting
a process without loading the file previously): 1 point

• Code documentation (Javadoc comments for every class and public method or
constructor), cleanliness and efficiency: 1 point

5.2. About the optional improvements

• The proposed optional changes can upgrade your mark up to 2 extra points:

◦ If you get less than 9,5 points in the compulsory part, the maximum mark will be
10.

◦ If you get at least 9,5 points in the compulsory part, the maximum mark will be
11.

Service and Process Programming – Unit 2. Final exercise 11

	Unit 2. Final exercise
	1. Introduction and first steps
	1.1. Setting up the project

	2. Class structure
	2.1. The WebPage class
	2.2. FileUtils class
	2.2.1. Web pages file structure

	2.3. LinkReader class
	2.4. Other useful classes

	3. The JavaFX application
	3.1. Designing the main view
	3.2. How should it work?
	3.2.1. Loading a file
	3.2.2. Starting the process
	3.2.3. Controlling progress
	3.2.4. Clearing the process
	3.2.5. Exiting the application

	4. Optional improvements
	5. Evaluation rules
	5.1. Compulsory part
	5.2. About the optional improvements

