TeX/Latex - Problema con tabla en latex

   
Vista:

Problema con tabla en latex

Publicado por Felix (1 intervención) el 24/02/2011 05:42:04
Hola que tal, escribo ya que tengo un problema con un par de tablas, originalmente las tenia en una hoja, pero, debido a correcciones ahora necesito que se distribuya en dos hojas, el problema es que es una tabla que contiene ecuaciones largas y que, ya logre que se vean bien de ancho, sin embargo, al utilizar el longtable ya no se como acomodarlas, solo es una columna, y con este ambiente, se sale de la hoja, a lo ancho, originalmente estaba trabajando con tabular, la pregunta es si hay elguna forma de hacer que la tabla se corte en un punto y que continue en otra pagina, el codigo del lo que tengo lo pongo a continuacion, es algo largo por las ecuaciones, espero me puedan ayudar gracias de antemano.

\begin{table}[!htbp]
\centering
\resizebox*{\textwidth}{!}{
\begin{tabular}{ c }
\hline

a) Sistema de coordenadas cartesianas\\ \hline \\
$\displaystyle \rho g_{x}-\frac{\partial p}{\partial x}+\mu \left[ \frac{\partial ^{2}u}{%
\partial x^{2}}+\frac{\partial ^{2}u}{\partial y^{2}}+\frac{\partial ^{2}u}{%
\partial z^{2}}\right] =\rho \left[ \frac{\partial u}{\partial t}+u\frac{%
\partial u}{\partial x}+v\frac{\partial u}{\partial y}+w\frac{\partial u}{%
\partial z}\right] $\\ \\
$\displaystyle \rho g_{y}-\frac{\partial p}{\partial y}+\mu \left[ \frac{\partial ^{2}v}{%
\partial x^{2}}+\frac{\partial ^{2}v}{\partial y^{2}}+\frac{\partial ^{2}v}{%
\partial z^{2}}\right] =\rho \left[ \frac{\partial v}{\partial t}+u\frac{%
\partial v}{\partial x}+v\frac{\partial v}{\partial y}+w\frac{\partial v}{%
\partial z}\right] $\\ \\
$\displaystyle \rho g_{y}-\frac{\partial p}{\partial y}+\mu \left[ \frac{\partial ^{2}v}{%
\partial x^{2}}+\frac{\partial ^{2}v}{\partial y^{2}}+\frac{\partial ^{2}v}{%
\partial z^{2}}\right] =\rho \left[ \frac{\partial v}{\partial t}+u\frac{%
\partial v}{\partial x}+v\frac{\partial v}{\partial y}+w\frac{\partial v}{%
\partial z}\right] $\\ \\
\leftline{La ecuación de continuidad es:}\\
$\displaystyle \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w%
}{\partial z}=0$ \\ \\
\hline
b) Sistema de coordenadas cilíndricas\\ \hline \\
$\displaystyle \rho \left[ \frac{\partial V_{r}}{\partial t}+V_{r}\frac{\partial V_{r}}{%
\partial r}+\frac{V_{\theta }}{r}\frac{\partial V_{r}}{\partial \theta }-%
\frac{V_{\theta }^{2}}{r}+V_{z}\frac{\partial V_{r}}{\partial z}\right]
=F_{r}-\frac{\partial p}{\partial r}+\mu \left( \frac{\partial ^{2}V_{r}}{%
\partial r^{2}}+\frac{1}{r}\frac{\partial V_{r}}{\partial r}-\frac{V_{r}}{%
r^{2}}+\frac{1}{r^{2}}\frac{\partial ^{2}V_{r}}{\partial \theta ^{2}}-\frac{2%
}{r^{2}}\frac{\partial V_{\theta }}{\partial \theta }+\frac{\partial
^{2}V_{r}}{\partial z^{2}}\right) $\\ \\
$\displaystyle \rho \left[ \frac{\partial V_{\theta }}{\partial t}+V_{r}\frac{\partial
V_{\theta }}{\partial r}+\frac{V_{\theta }}{r}\frac{\partial V_{\theta }}{%
\partial \theta }+\frac{V_{r}V_{\theta }}{r}+V_{z}\frac{\partial V_{\theta }%
}{\partial z}\right] =F_{\theta }-\frac{1}{r}\frac{\partial p}{\partial
\theta }+\mu \left( \frac{\partial ^{2}V_{\theta }}{\partial r^{2}}+\frac{1}{%
r}\frac{\partial V_{\theta }}{\partial r}-\frac{V_{\theta }}{r^{2}}+\frac{1}{%
r^{2}}\frac{\partial ^{2}V_{\theta }}{\partial \theta ^{2}}+\frac{2}{r^{2}}%
\frac{\partial V_{r}}{\partial \theta }+\frac{\partial ^{2}V_{\theta }}{%
\partial z^{2}}\right) $\\ \\
$\displaystyle \rho \left[ \frac{\partial V_{z}}{\partial t}+V_{r}\frac{\partial V_{z}}{%
\partial r}+\frac{V_{\theta }}{r}\frac{\partial V_{z}}{\partial \theta }%
+V_{z}\frac{\partial V_{z}}{\partial z}\right] =F_{z}-\frac{\partial p}{%
\partial z}+\mu \left( \frac{\partial ^{2}V_{z}}{\partial r^{2}}+\frac{1}{r}%
\frac{\partial V_{z}}{\partial r}+\frac{1}{r^{2}}\frac{\partial ^{2}V_{z}}{%
\partial \theta ^{2}}+\frac{\partial ^{2}V_{z}}{\partial z^{2}}\right) $ \\ \\
\leftline{La ecuación de continuidad es:}\\
$\displaystyle \nabla \cdot \overrightarrow{V}=\frac{1}{r}\frac{\partial (rV_{r})}{%
\partial r}+\frac{1}{r}\frac{\partial V\theta }{\partial \theta }+\frac{%
\partial Vz}{\partial z}=0$ \\ \\ \hline

c) Sistema de coordenadas esféricas\\ \hline \\
$\displaystyle \rho \left( \frac{\partial V_{r}}{\partial t}+V_{r}\frac{\partial
V_{r}}{\partial r}+\frac{V_{\theta }}{r}\frac{\partial V_{r}}{\partial
\theta }+\frac{V_{\phi}}{r\sin \theta }\frac{\partial V_{r}}{\partial
\phi }-\frac{V_{\theta }^{2}}{r}-\frac{V_{\phi }^{2}}{r}\right) $\\ \\
$\displaystyle =F_{r}-\frac{%
\partial p}{\partial r}+\mu \left[ \frac{\partial ^{2}V_{r}}{\partial r^{2}}+%
\frac{2}{r}\frac{\partial V_{r}}{\partial r}-\frac{2V_{r}}{r^{2}}+\frac{1}{%
r^{2}}\frac{\partial ^{2}V_{r}}{\partial \theta ^{2}}+\frac{\cot \theta }{%
r^{2}}\frac{\partial V_r}{\partial \theta }+\frac{1}{r^{2}\sin ^{2}\theta }%
\frac{\partial ^{2}V_{r}}{\partial \phi ^{2}}-\frac{2}{r^{2}}\frac{\partial
V_{\theta }}{\partial \theta }-\frac{2V_{\theta }\cot \theta }{r^{2}}-\frac{2%
}{r^{2}\sin \theta }\frac{\partial V_{\phi }}{\partial \phi }\right] $\\ \\
$\displaystyle \rho\left( { \frac{\partial V_\theta}{\partial t} + V_r\frac{\partial V_\theta}{\partial r} + \frac{V_r V_\theta}{r} + \frac{V_\theta}{r}\frac{\partial V_\theta}{\partial \theta} + \frac{V_\phi}{r\sin \theta}\frac{\partial V_\theta}{\partial \phi} - \frac{V^2_\phi \cot \theta}{r} } \right) $ \\ \\
$\displaystyle = F_\theta - \frac{1}{r}\frac{\partial p}{\partial \theta} + \mu\left[ { \frac{\partial^2 V_\theta}{\partial r^2} + \frac{2}{r}\frac{\partial V_\theta}{\partial r} - \frac{V_\theta}{r^2 \sin^2 \theta} + \frac{1}{r^2}\frac{\partial^2 V_\theta}{\partial \theta^2} + \frac{\cot \theta}{r^2}\frac{\partial V_\theta}{\partial \theta} + \frac{1}{r^2\sin^2 \theta}\frac{\partial^2 V_\theta}{\partial \phi^2} + \frac{2}{r^2}\frac{\partial V_r}{\partial V_\theta} - \frac{2\cot \theta}{r^2\sin \theta}\frac{\partial V_\phi}{\partial \phi} } \right] $ \\ \\
$
\displaystyle \rho \left( { \frac{\partial V_\phi}{\partial t} +%
V_r\frac{\partial V_\phi}{\partial r} + \frac{V_rV_\phi}{r} +%
\frac{V_\theta}{r}\frac{\partial V_\phi}{\partial \theta} + \frac{V_\theta V_\phi \cot \theta}{r} + \frac{V_\phi}{r\sin \theta} \frac{\partial V_\phi}{\partial \phi} } \right)
$ \\ \\
$ \displaystyle
= F_\phi - \frac{1}{r\sin \phi}\frac{\partial p}{\partial \phi} + \mu%
\left[ { \frac{\partial^2 V_\phi}{\partial r^2} + \frac{2}{r}\frac{\partial V_\phi}{\partial r} - \frac{V_\phi}{r^2\sin^2 \theta} + \frac{1}{r^2}\frac{\partial^2 V_\phi}{\partial \theta^2} + \frac{\cot \theta}{r^2}\frac{\partial V_\phi}{\partial \theta} + \frac{1}{r^2\sin^2 \theta} \frac{\partial^2 V_\phi}{\partial \phi^2} + \frac{2}{r^2\sin \theta}\frac{\partial V_r}{\partial \phi} + \frac{2\cot \theta}{r^2\sin \theta}\frac{\partial V_\theta}{\partial \phi} } \right]
$ \\ \\
\leftline{La ecuación de continuidad es:}\\
$\displaystyle \frac{\partial V_{r}}{\partial r}+\frac{2V_{r}}{r}+\frac{1}{r}\frac{%
\partial V_{\theta }}{\partial \theta }+\frac{V_{\theta }\cot \theta }{r}+%
\frac{1}{r\sin \theta }\frac{\partial V_{\phi }}{\partial \phi }=0$\\ \\
\hline \hline
\end{tabular}
}
\captiontitlefont{\itshape}
\captionstyle{\centering}
\captionwidth{300px}
\changecaptionwidth{}
\caption[Ecuaciones de Navier - Stokes en coordenadas cartesianas, cilíndricas y esféricas]{Ecuaciones de Navier - Stokes en coordenadas cartesianas, cilíndricas y esféricas \cite{KRISHNAN}}
\label{TCP03NAVS}
\end{table}
Valora esta pregunta
Me gusta: Está pregunta es útil y esta claraNo me gusta: Está pregunta no esta clara o no es útil
0
Responder