Mostrar los tags: EP

Mostrando del 1 al 10 de 99 coincidencias
<<>>
Se ha buscado por el tag: EP
Imágen de perfil
Actualizado

Generador de gifs a partir de video (nueva version)


Python

Actualizado el 21 de Abril del 2024 por Antonio (75 códigos) (Publicado el 29 de Enero del 2024)
809 visualizaciones desde el 29 de Enero del 2024
Programa para generar gifs animados a partir de vídeos, que se ejecuta en la línea de comandos.
ARGUMENTOS:
-src/--source: Nombre del vídeo original (obligatorio).
-dest/--destination: Nombre del archivo a generar (opcional).
-sz/--size: Tamaño en porcentaje del gif respecto al vídeo original (opcional).
-shw/--show: Muestra resultado en ventana emergente al finalizar el proceso de generado (opcional).
-st/--start: Segundo inicial para gif (opcional).
-e/--end: Segundo final (opcional).
-spd/--speed: Velocidad relativa de la animación (opcional)

PARA CUALQUIER DUDA U OBSERVACIÓN, USEN LA SECCIÓN DE COMENTARIOS.

imagge
Imágen de perfil
Actualizado

Suavizado de imagen en archivos de vídeo por 'Filtrado bilateral', (aplicación en línea de comandos)


Python

Actualizado el 21 de Abril del 2024 por Antonio (75 códigos) (Publicado el 20 de Marzo del 2023)
6.199 visualizaciones desde el 20 de Marzo del 2023
Programa para realizar filtrado de imagen en archivos de vídeo (preferiblemente de corta duración) utilizando el algoritmo de 'filtrado bilateral' pudiendo especificar los valores sigma de espacio y color y el diámetro del vecindario para cada pixel. Los vídeos filtrados se generan, por defecto, conservando su sonido, aunque se pueden generar sin este introduciendo el argumento '-ae'/'--exclude_audio'.

ARGUMENTOS:
-src/--source: Nombre del vídeo original (OBLIGATORIO)
-dest/--destination: Nombre del video a generar ('NewFilteredVid.mp4' por defecto)
-sgc/--sigma_color: Valor sigma para espacio de color (75 por defecto)
-sgs/--sigma_space: Valor sigma espacial (75 por defecto)
-pd/--pixel_diameter: Diámetro de la vecindad de píxeles (9 por defecto)
-ae/--exclude_audio: Excluir audio y generar video sin sonido (OPCIONAL)

PARA CUALQUIER DUDA U OBSERVACIÓN UTILIZEN LA SECCIÓN DE COMENTARIOS
bvf
bvf2
bvf3
bvf4
Imágen de perfil

Generador de gifs a partir de video, en línea de comandos.


Python

estrellaestrellaestrellaestrellaestrella(4)
Actualizado el 3 de Abril del 2024 por Antonio (75 códigos) (Publicado el 9 de Diciembre del 2022)
8.193 visualizaciones desde el 9 de Diciembre del 2022
Programa para generar gifs animados a partir de vídeos, que se ejecuta en la línea de comandos.
ARGUMENTOS:
-src/--source: Nombre del vídeo original (obligatorio).
-dest/--destination: Nombre del archivo a generar (opcional).
-sz/--size: Tamaño en porcentaje del gif respecto al vídeo original (opcional).
-shw/--show: Muestra resultado en ventana emergente al finalizar el proceso de generado (opcional).
-st/--start: Segundo inicial para gif (opcional).
-e/--end: Segundo final (opcional).
-spd/--speed: Velocidad relativa de la animación (opcional)

PARA CUALQUIER DUDA U OBSERVACIÓN, USEN LA SECCIÓN DE COMENTARIOS.

mk
Imágen de perfil

InceptionV3


Python

Publicado el 7 de Marzo del 2024 por Hilario (122 códigos)
245 visualizaciones desde el 7 de Marzo del 2024
IMAGEN A PREDECIR.
-------------------------------
predice

********************************************************************************************************************
Pretendemos evaluar el acierto de este ejercicio de red neuronal convolucional, CNN.
-----------------------------------------------------------------------------------------------------------------
Planteamos el sencillo código: Aula_28_inception_v3.py, utilizando una arquitectura de red neuronal convolucional (CNN), que se utiliza comúnmente para tareas de visión por computadora, como clasificación de imágenes.
Fue desarrollada por Google y es parte de la familia de modelos Inception.

La idea clave detrás de InceptionV3 es utilizar múltiples tamaños de filtros convolucionales
en paralelo para capturar patrones de diferentes escalas en una imagen. En lugar de elegir
un solo tamaño de filtro, InceptionV3 utiliza varios tamaños, desde pequeños hasta grandes,
y luego concatena las salidas de estos filtros para formar una representación más rica y completa de la imagen.

Además, InceptionV3 incorpora módulos llamados "módulos de Inception",
que son bloques de construcción que contienen diferentes operaciones convolucionales en paralelo.
Estos módulos permiten que la red aprenda representaciones más complejas y abstractas de las imágenes.

Sus principales características y funciones son las siguientes:

Extracción jerárquica de características: InceptionV3 utiliza capas convolucionales
para extraer características jerárquicas de las imágenes. Estas capas aprenden patrones
simples en las capas iniciales y patrones más complejos y abstractos a medida que se profundiza en la red.

Módulos de Inception: La arquitectura de InceptionV3 utiliza módulos llamados "módulos de Inception" o "bloques Inception".
Estos módulos incorporan múltiples operaciones convolucionales de diferentes tamaños de filtro en paralelo. Al hacerlo,
la red puede capturar patrones de información a diferentes escalas en una imagen.

Reducción de dimensionalidad: InceptionV3 incluye capas de reducción de dimensionalidad,
como capas de agrupación máxima y capas de convolución 1x1, para reducir la cantidad de
parámetros y operaciones, haciendo que la red sea más eficiente y manejable.

Regularización: La red incluye técnicas de regularización, como la normalización por lotes y la
regularización L2, para prevenir el sobreajuste y mejorar la generalización del modelo.

Arquitectura profunda: InceptionV3 es una red profunda con muchas capas, lo que le permite
aprender representaciones complejas y abstractas de las imágenes, lo que es beneficioso
para tareas de clasificación de imágenes en conjuntos de datos grandes y complejos.
**************************************************************************************
SALIDA DEL EJERCICIO, AL APORTAR LA IMAGEN DE MUESTRA.
1/1 [==============================] - ETA: 0s
1/1 [==============================] - 1s 744ms/step
1: trailer_truck (0.70)
2: moving_van (0.08)
3: garbage_truck (0.05)
[Finished in 3.9s]
**************************************************************************************
Se debera modificar en el código, la ruta de la imagen de muestra desde tu ordenador.
*************************************************************************************

El ejercicio ha sido realizado bajo plataforma linux.
Ubuntu 20.04.6 LTS.
Editado con Sublime Text.
Ejecución bajo consola linux:
python3 Aula_28_inception_v3.py
---------------------------------------------------------------------------------------
Imágen de perfil

Predicción más próxima. CNN


Python

Publicado el 21 de Enero del 2024 por Hilario (122 códigos)
160 visualizaciones desde el 21 de Enero del 2024
La última imagen corresponde a la EPOCH número 3.
-----------------------------------------------------------------------
Figure_2
Figure_1
Figure_3

**********************************************************************************************************************


MANUAL PREDICCIÓN PRÓXIMA A DECISIÓN.
------------------------------------

Ejercicio_IA_Aula_08.py
-----------------------

Este código implementa una red convolucional (CNN) utilizando el conjunto de datos CIFAR-10 para clasificación de imágenes. Aquí hay una explicación sencilla de lo que hace el ejercicio:

Carga y Preprocesamiento de Datos:
-----------------------------------------------
Importa las bibliotecas necesarias y carga el conjunto de datos CIFAR-10.
Normaliza las imágenes dividiendo los valores de píxeles por 255.
Convierte las etiquetas de clase a formato categórico.
Creación de Generadores de Datos:

Define generadores de datos para el entrenamiento y la validación, aplicando aumentación de datos en el conjunto de entrenamiento.

Definición del Modelo CNN:
-------------------------
Crea un modelo secuencial de CNN con capas convolucionales, activaciones ReLU, capas de max-pooling, una capa Flatten, capas Dense y una capa de salida con activación softmax.
Utiliza la función de pérdida 'categorical_crossentropy', el optimizador 'rmsprop' y mide la precisión durante el entrenamiento.

Entrenamiento del Modelo:
-----------------------
Entrena el modelo en varios epochs utilizando el generador de entrenamiento y el generador de validación.
Después de cada epoch, muestra algunas imágenes del conjunto de validación junto con las predicciones del modelo.

Mostrar Resultados Finales:
--------------------------
Muestra los resultados finales, incluyendo la precisión alcanzada en la última epoch.
Visualización de Imágenes en Decisiones:

Define una función (show_images_on_decision) para visualizar imágenes del conjunto de validación junto con las predicciones del modelo.

En resumen, este código implementa y entrena una CNN para clasificación de imágenes en el conjunto de datos CIFAR-10, y muestra algunas imágenes junto con las predicciones del modelo después de cada epoch de entrenamiento.

LAS BIBLIOTECAS QUE UTILIZAREMOS SERÁN LOS SIGUIENTES:
------------------------------------------------------

numpy: Módulo de la librería de matemáticas NumPy para trabajar con matrices y vectores
matplotlib: Módulo de la librería de visualización Matplotlib para crear gráficos y visualizaciones
keras.datasets: Módulo de la biblioteca Keras para cargar y trabajar con conjuntos de datos predefinidos
keras.utils: Módulo de la biblioteca Keras para convertir etiquetas de variables categóricas en matrices numéricas
keras.preprocessing.image: Módulo de la biblioteca Keras para preprocesar imágenes
keras.models: Módulo de la biblioteca Keras para crear y administrar modelos de redes neuronales
keras.layers: Módulo de la biblioteca Keras para definir y agregar capas a los modelos de redes neuronales
keras.backend: Módulo de la biblioteca Keras para acceder a las funciones y variables del backend de TensorFlow


****************************************************************************************************************
Establecimiento de parámetros:
-----------------------------
Se establecen algunos parámetros relevantes para el modelo de red neuronal:

modo: Modo de clasificación utilizado, "categorical" para multiclase o "binary" para binaria
dimension: Dimensión de las imágenes de entrenamiento (32x32 en este caso)
Carga del conjunto de datos CIFAR-10

Se carga el conjunto de datos CIFAR-10, que contiene imágenes de 60,000 objetos de 10 clases diferentes. Las imágenes se dividen en conjuntos de entrenamiento y validación.

Preprocesamiento de imágenes:
----------------------------


Las imágenes se convierten en formato float y se escalan entre 0 y 1. Además, se representan en formato categórico para la clasificación multiclase.

Generación de datos con transformación:

Se utilizan dos generadores de datos para preprocesar las imágenes durante el entrenamiento y la validación. Estos generadores aplican transformaciones como escalado, giro y volteo para aumentar la diversidad del dataset y mejorar el rendimiento del modelo.

Creación del modelo de red neuronal:
----------------------------------
Se crea un modelo de red neuronal convolucional secuencial utilizando el módulo Sequential de Keras. El modelo consta de las siguientes capas:

Capas convolucionales:
---------------------
Tres capas convolucionales con filtros de 16, 32 y 64 filtros, respectivamente. Estas capas extraen características espaciales de las imágenes.

Funciones de activación:
-----------------------
Se utiliza la función de activación ReLU después de cada capa convolucional para mejorar la selectividad de las características extraídas.

"Polinización" máxima:
-------------------
Se utiliza la capa de maxpooling después de cada capa convolucional para reducir la dimensionalidad de las representaciones espaciales sin perder información importante.

Flatten:
-------

Se utiliza una capa de aplanamiento para convertir las matrices bidimensionales de características en vectores unidimensionales.

Capas densas:
-----------
Se agregan dos capas densas con 64 y 10 neuronas, respectivamente. Estas capas representan la parte final del modelo, donde se realiza la clasificación.

Función de activación final: La última capa utiliza la función de activación softmax para generar probabilidades de pertenencia a cada una de las 10 clases.

Compilación del modelo.
**********************

Se compila el modelo definiendo las funciones de pérdida y optimizador. La función de pérdida utilizada es la entropía cruzada categórica para la clasificación multiclase, y el optimizador utilizado es el RMSprop, un algoritmo de optimización eficiente para redes neuronales convolucionales.

Entrenamiento del modelo.
***********************
Se entrena el modelo durante 5 épocas, utilizando los conjuntos de entrenamiento y validación. En cada época, el modelo se ajusta a los datos de entrenamiento y se evalúa en los datos de validación para monitorear su progreso.

Función para mostrar imágenes de decisión
****************************************
Se define una función show_images_on_decision que muestra imágenes del conjunto de validación y sus predicciones. Esta función se utiliza después de cada época para visualizar cómo está funcionando el modelo.

Resultados finales
*****************
Al final del entrenamiento, se imprimen los resultados finales, incluyendo la precisión del modelo en el conjunto de validación.

------------------------------------------------------------------------------------------------------------
El ejercicio fue realizado en una plataforma Linux.
Ubuntu 20.04.6 LTS.
Editado en Sublime text.
Ejecución bajo consola de linux:
--------------------------------------------------------------------------------------------
También se puede editar y ejecutar con GOOGLE COLAB.
********************************************************************************************************************

SALIDA DEL EJERCICIO DESPUES DE 5 CICLOS O EPOCH, CON LA PRECISIÓN OBTENIDA.
***************************************************************************

Epoch 1/5
3125/3125 [==============================] - 55s 17ms/step - loss: 1.7981 - accuracy: 0.3388 - val_loss: 1.4368 - val_accuracy: 0.4725
1/1 [==============================] - 0s 122ms/step
Epoch 2/5
3125/3125 [==============================] - 54s 17ms/step - loss: 1.5218 - accuracy: 0.4575 - val_loss: 1.3205 - val_accuracy: 0.5330
1/1 [==============================] - 0s 24ms/step
Epoch 3/5
3125/3125 [==============================] - 54s 17ms/step - loss: 1.4376 - accuracy: 0.5005 - val_loss: 1.2920 - val_accuracy: 0.5522
1/1 [==============================] - 0s 24ms/step
Epoch 4/5
3125/3125 [==============================] - 54s 17ms/step - loss: 1.4429 - accuracy: 0.5088 - val_loss: 1.4771 - val_accuracy: 0.4987
1/1 [==============================] - 0s 24ms/step
Epoch 5/5
3125/3125 [==============================] - 54s 17ms/step - loss: 1.4649 - accuracy: 0.5012 - val_loss: 1.3029 - val_accuracy: 0.5609
1/1 [==============================] - 0s 24ms/step


_____________________________________________________
| Dimension | Capa | Filtro | Precision |
_____________________________________________________
| 32 | 3 | [64] | 50.1240015 |
_____________________________________________________

Imágen de perfil

SERVIDOR DE TIEMPO.


C/Visual C

Publicado el 30 de Agosto del 2022 por Hilario (122 códigos)
404 visualizaciones desde el 30 de Agosto del 2022
*********************************************
De gustibus et colon bus non est disputandum.
------------------------------------------
Hilario Iglesias Martínez.
-------------------------------------------
Sencillo servidor de tiempo.
A una petición o llamada de un cliente,
devuelve los datos del día y la Hora
del Servidor.
Se utiliza la llamada sprintf().
---------------------------------------
Puede ejecutarse bajo consola Linux
en el mismo ordenador,o distintos, debidamente
configurados para permitir la conexión.
Realizar un comando ifconfig, para saber
com qué IPs interactuar.
Utilizar los comandos telnet o nc.
----------------------------------
Realizado en:
LINUX Ubuntu 20.04.4 LTS.
Bajo el standard ANSI C.-C-11
Consola de Linux.
Imágen de perfil

datepicker para tablet


FoxPro/Visual FoxPro

estrellaestrellaestrellaestrellaestrella(20)
Actualizado el 12 de Noviembre del 2021 por Baldo (17 códigos) (Publicado el 22 de Noviembre del 2014)
19.116 visualizaciones desde el 22 de Noviembre del 2014
datepicker (entrada de fechas) en VFP puro y tamaño suficiente para tablets y dispositivos (Windows 8) que tienen un tamaño de pantalla pequeño (7-10") y una resolución grande (1280x800 o más..), lo que convierte enta entrada en incómoda.

Configurable en aspecto (ver el 'Init') del form datepick.

Se adjunta proyecto con ejemplo básico de funcionamiento...


datepicker
Imágen de perfil

Obtener los elementos que no se repiten en una lista


Python

Actualizado el 1 de Junio del 2021 por Katas (150 códigos) (Publicado el 18 de Septiembre del 2020)
2.351 visualizaciones desde el 18 de Septiembre del 2020
Función que recibe una lista y devuelve otra lista con los valores que no se repiten dentro de la lista.
Utiliza la función count() para determinar si un elemento esta mas de una vez.

1
2
3
4
5
uniqueValues([1, 2, 3, 5, 4, 3, 2]) # [1, 5, 4]
uniqueValues([1, 2]) # [1, 2]
uniqueValues([1, 2, 2, 1]) # []
uniqueValues(["a", "b", "c", "a"]) # ["b", "c"]
uniqueValues([]) # []


Aquí la misma función para Obtener los elementos que se repiten en una lista
Imágen de perfil

Obtener los elementos que se repiten en una lista


Python

Publicado el 1 de Junio del 2021 por Katas (150 códigos)
2.225 visualizaciones desde el 1 de Junio del 2021
Función que recibe una lista y devuelve otra lista con los valores que se repiten dentro de la lista.
Utiliza la función count() para determinar si un elemento esta mas de una vez en la lista.

1
2
3
4
5
repeatedValues([1, 2, 3, 5, 4, 3, 2]) # [2, 3]
repeatedValues([1, 2]) # []
repeatedValues([1, 2, 2, 1]) # [1, 2]
repeatedValues(["a", "b", "c", "a"]) # ["a"]
repeatedValues([]) # []


Aquí la misma función para Obtener los elementos que NO se repiten en una lista