Códigos Fuente de Python

Mostrando del 1 al 10 de 766 registros
<<>>
Imágen de perfil
Val: 712
Bronce
Ha aumentado 1 puesto en Python (en relación al último mes)
Gráfica de Python
Actualizado

Lector, por cámara, de códigos "QR"


Python

estrellaestrellaestrellaestrellaestrella(12)
Actualizado el 14 de Junio del 2024 por Antonio (76 códigos) (Publicado el 22 de Abril del 2020)
42.835 visualizaciones desde el 22 de Abril del 2020
El programa tiene como objeto principal, la lectura, haciendo uso de la cámara web, de códigos QR. Para ello, simplemente pulsaremos el botón "INICIAR LECTURA POR CAMARA" (que desplegará el visor de la cámara) y colocaremos el código a leer, delante de la cámara. A su vez, también podremos leer códigos QR, en formato "png" y "jpg" almacenados en nuestra computadora (para lo que usaremos la opción "CARGAR ARCHIVO". Finalmente, también podremos leer, directamente, un código que se encuentre visible en pantalla (botón "DETECTAR EN PANTALLA").

qrcc
qrcm1
Imágen de perfil
Val: 712
Bronce
Ha aumentado 1 puesto en Python (en relación al último mes)
Gráfica de Python
Actualizado

Generador de gifs a partir de video, en línea de comandos.


Python

estrellaestrellaestrellaestrellaestrella(6)
Actualizado el 14 de Junio del 2024 por Antonio (76 códigos) (Publicado el 9 de Diciembre del 2022)
8.784 visualizaciones desde el 9 de Diciembre del 2022
Programa para generar gifs animados a partir de vídeos, que se ejecuta en la línea de comandos.
ARGUMENTOS:
-src/--source: Nombre del vídeo original (obligatorio).
-dest/--destination: Nombre del archivo a generar (opcional).
-sz/--size: Tamaño en porcentaje del gif respecto al vídeo original (opcional).
-shw/--show: Muestra resultado en ventana emergente al finalizar el proceso de generado (opcional).
-st/--start: Segundo inicial para gif (opcional).
-e/--end: Segundo final (opcional).
-spd/--speed: Velocidad relativa de la animación (opcional)

PARA CUALQUIER DUDA U OBSERVACIÓN, USEN LA SECCIÓN DE COMENTARIOS.

mk
Imágen de perfil

Red Neuronal CNN, selección de características.


Python

Publicado el 3 de Junio del 2024 por Hilario (128 códigos)
233 visualizaciones desde el 3 de Junio del 2024
imagen
Figure_1

***********************************************************************************************************************
------------------------------------------------------------------------------------------------------------------------------------------






Aula_28_Aprendizaje_RedNeuronal_CNN.py
-----------------------------------------------------------
**************************************************

Pretendemos alojar en esta ruta de mi ordenador:/home/margarito/python/PetImages, el directorio PetImages, que a su vez contiene otros dos directorios con el nombre cat y dog. Los mismos contienen imagenes de gatos y perros. Vamos a construir una red neuronal convolucional, que dada la imagen en esta ruta:/home/margarito/python/imagen.jpeg, determine si pertenece a un gato, o a un perro. También s deberá mostrar la imagen.

Lo primero que debemos hacer es el código que descargará los datos.

# Descargar el archivo de datos
url = "https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_5340.zip"
filename = "kagglecatsanddogs_5340.zip"
r = requests.get(url)
with open(filename, 'wb') as f:
f.write(r.content).
------------------------------------------------------------------------------------------------------------------------
Las partes del ejercicio a resaltar, son las siguientes:

En general, este ejercicio describe el proceso completo de implementación de una red neuronal convolucional (CNN) usando TensorFlow para clasificar imágenes de gatos y perros. A continuación se presenta un resumen de las partes más importantes:

1. Configuración Inicial y Descarga de Datos.
---------------------------------------------------------------
Se importa TensorFlow y otras bibliotecas necesarias.
Se descarga el dataset de gatos y perros desde una URL proporcionada y se descomprime en el directorio de trabajo.

2. Preparación de los Datos.
------------------------------------
Verificación de Imágenes: Se recorren las carpetas de imágenes para verificar que no haya archivos corruptos y se eliminan los que no son válidos.
Organización del Directorio: Se aseguran que las carpetas para las categorías cat y dog existan en el directorio base.

3. Preprocesamiento de los Datos.
---------------------------------------------
Se utiliza ImageDataGenerator para realizar una reescalado de las imágenes y dividir el conjunto de datos en entrenamiento y validación.
Generadores de Datos: Se crean generadores de datos para el conjunto de entrenamiento y de validación, especificando
el tamaño de las imágenes, el tamaño del batch, y el modo de clasificación binaria.

4. Construcción del Modelo CNN.
-------------------------------------------
Se define una arquitectura secuencial de la red neuronal con capas de:
Convolución: Tres capas convolucionales con activación ReLU.
Max-Pooling: Después de cada capa convolucional.
Flatten: Para convertir los mapas de características 2D a un vector 1D.
Densa: Una capa densa con 512 neuronas y activación ReLU.
Dropout: Con una tasa del 50% para reducir el sobreajuste.
Salida: Una capa de salida con activación sigmoide para la clasificación binaria.

5. Compilación del Modelo.
-----------------------------------
El modelo se compila utilizando el optimizador Adam y la función de pérdida de binary_crossentropy, con métrica de precisión.

6. Entrenamiento del Modelo.
------------------------------------------
El modelo se entrena durante 10 épocas utilizando los generadores de datos creados anteriormente.
Se calculan los pasos por época basados en el tamaño del conjunto de entrenamiento y validación.

7. Evaluación del Modelo.
--------------------------------------
Se evalúa el modelo usando el conjunto de validación y se imprime la precisión de validación.

8. Predicción de Nuevas Imágenes.
----------------------------------------------
Se carga una nueva imagen, se preprocesa y se realiza una predicción utilizando el modelo entrenado.
Se muestra la imagen junto con la predicción (gato o perro).

9- Características del EQUIPO donde se realizó el ejercicio.
----------------------------------------------------------------------------------
El ejercicio fue realizado en una plataforma Linux.
Con el sistema operativo Ubuntu 20.04.6 LTS.
Editado con Sublime text.

El adware del mismo es:
------------------------------------
Intel® Core™ i5-10400 CPU @ 2.90GHz × 12
Intel® UHD Graphics 630 (CML GT2)

Para llegar a esta exactitud o accuracy
157/157 [==============================] - 9s 56ms/step - loss: 0.8151 - accuracy: 0.8177
Validation accuracy: 81.77%, tardamos 2258.9 segundos.

Como se puede apreciar, mucho tiempo de ejecución, y muy forzado el equipo a dedicación completa.

------------------------------------------------------------------------------------------------
Ejecución bajo consola Linux:
python3 Aula_28_Aprendizaje_RedNeuronal_CNN.py.
Quien desee salvar el modelo, para experimentar con él
puede hacerlo añadiendo esta línea de código
a continuación del proceso de compilación:
# Guardar el modelo
model.save('modelo_cnn_gatos_perros.h5')
# Guarda en formato HDF5, indicando la ruta de tu ordenador donde se desee salvarlo.
Imágen de perfil

Repaso graficos con matplotlib


Python

Publicado el 29 de Mayo del 2024 por Hilario (128 códigos)
177 visualizaciones desde el 29 de Mayo del 2024
Figure_1


**********************************************************************************************************************

Repaso-matplotlib-Aula-38-uranio-235.py
------------------------------------------------------
Con la idea de repasar la librería matplotlib, propongo este sencillo ejercicio de la representación aleatoria de un átomo de Uranio-235.
El ejercicio es de ejecución sencilla, y puede el alunno jugar con sus datos de entrada.
La librería matplotlib, es de uso habitual en todos los programas graficados, incluidos
los de inteligencia artificial.
----------------------------------------------------------------------------------------
Vamos a dar una pequeña descripción de Física cuántica, con el fin de entender este desarrollo.
********************************************************************************************
En la física cuántica, la idea de electrones orbitando alrededor del núcleo en trayectorias definidas, como planetas alrededor del sol, es incorrecta y ha sido reemplazada por un modelo más complejo y preciso.

En el modelo cuántico, los electrones no tienen órbitas definidas. En cambio, se describen mediante funciones de onda, que son soluciones a la ecuación de Schrödinger. Estas funciones de onda no nos dicen la trayectoria exacta de un electrón, sino la probabilidad de encontrar un electrón en una determinada región del espacio alrededor del núcleo. Esta región donde es más probable encontrar al electrón se llama "orbital".

Los orbitales tienen diferentes formas y tamaños, y cada uno corresponde a un nivel de energía específico. Los orbitales son esféricos, los p tienen forma de mancuerna, los d y f son más complejos. La densidad de probabilidad, que es la interpretación de la función de onda, nos da una "nube electrónica" donde la densidad de esta nube es mayor en las regiones donde es más probable encontrar al electrón.

En resumen:

Modelo Cuántico: En lugar de órbitas definidas, los electrones existen en "nubes de probabilidad" llamadas orbitales.
Funciones de Onda: Describen la probabilidad de encontrar un electrón en una determinada región del espacio.
Orbitales: Las diferentes formas (s, p, d, f) corresponden a diferentes distribuciones de probabilidad y niveles de energía.
Así que, efectivamente, los electrones están en un estado de movimiento continuo y no podemos determinar su posición exacta, sino solo la probabilidad de encontrarlo en un lugar determinado en un momento dado.


********************************************************************

Podemos crear una visualización simple utilizando la biblioteca matplotlib en Python para representar el núcleo atómico y una nube de electrones en movimiento aleatorio. A continuación, os presento el código Repaso-matplotlib-Aula-38-uranio-235.py
para crear esta simulación:

Este código hace lo siguiente:

Configuración inicial: Define el número de electrones y el límite del espacio donde se moverán.
Posiciones iniciales: Genera posiciones iniciales aleatorias para los electrones dentro de un cubo centrado en el núcleo.
Gráfico: Configura el gráfico 3D utilizando matplotlib.
Núcleo y electrones: Dibuja el núcleo en el centro y los electrones en sus posiciones iniciales.
Función de actualización: Mueve los electrones aleatoriamente en cada fotograma, asegurándose de que permanezcan dentro de los límites definidos.
Animación: Utiliza FuncAnimation de matplotlib para animar el movimiento de los electrones.
Este es un modelo simplificado y no representa fielmente la mecánica cuántica, pero da una buena visualización de un núcleo y una nube de electrones moviéndose aleatoriamente alrededor
de él.

*****************************************************************************************

Umbral de órbita extrema: Se define una variable umbral_extremo que establece el límite a partir del cual consideramos que un electrón está en la órbita extrema.
Función de actualización:
Se calcula la distancia de cada electrón al núcleo usando np.linalg.norm.
Se separan los electrones en dos grupos: normales y extremos, según la distancia calculada.
Se limpian y vuelven a dibujar todos los elementos del gráfico en cada fotograma.
Se plotean los electrones normales en azul y los extremos en rosa.
Esto resaltará los electrones que están a punto de salirse de la órbita con un color rosa en la animación.

********************************************************************************************
Realizado en Linux, ubuntu.
Ejecución.
python3 Repaso-matplotlib-Aula-38-uranio-235.py
Imágen de perfil
Val: 712
Bronce
Ha aumentado 1 puesto en Python (en relación al último mes)
Gráfica de Python

Aplicación para ocultar información de texto en imágenes o fotografías (nueva versión).


Python

estrellaestrellaestrellaestrellaestrella(1)
Actualizado el 25 de Mayo del 2024 por Antonio (76 códigos) (Publicado el 26 de Marzo del 2021)
12.979 visualizaciones desde el 26 de Marzo del 2021
Aplicación para codificar y decodificar mensajes de texto en imágenes.

La imagen se selecciona mediante el botón "SEARCH".
En el modo "Encode" el texto a ocultar se introduce en el espacio superior. (el programa generará un nuevo archivo de imagen cuyo nombre tendrá el prefijo "encoded_" delante del título del archivo original.
En el modo "Decode" el texto oculto se muestra en el espacio superior.

PARA CUALQUIER DUDA U OBSERVACIÓN USEN LA SECCIÓN DE COMENTARIOS.
stgp

Repositorio en GitHub:
https://github.com/antonioam82/Steganography
Imágen de perfil
Val: 712
Bronce
Ha aumentado 1 puesto en Python (en relación al último mes)
Gráfica de Python

Reproductor de música.


Python

Actualizado el 25 de Mayo del 2024 por Antonio (76 códigos) (Publicado el 20 de Abril del 2021)
23.688 visualizaciones desde el 20 de Abril del 2021
Programa para reproducir archivos de audio que incorpora la posibilidad de crear una lista de favoritos.
El programa necesita de un archivo "json" que se generará al ejecutarse por primera vez.
PARA CUALQUIER DUDA U OBSERVACIÓN USEN LA SECCIÓN DE COMENTARIOS.
mp
Imágen de perfil
Val: 712
Bronce
Ha aumentado 1 puesto en Python (en relación al último mes)
Gráfica de Python

CALCULADORA DE DIVISAS


Python

Actualizado el 25 de Mayo del 2024 por Antonio (76 códigos) (Publicado el 3 de Mayo del 2024)
368 visualizaciones desde el 3 de Mayo del 2024
Programa para convertir cantidades de moneda a otras divisas (el programa muestra la tasa de cambio y el equivalente en la otra moneda) usando datos actualizados.

cuc
PARA CUALQUIER DUDA U OBSERVACIÓN USEN LA SECCIÓN DE COMENTARIOS.
Imágen de perfil
Val: 712
Bronce
Ha aumentado 1 puesto en Python (en relación al último mes)
Gráfica de Python

Suavizado de imagen en archivos de vídeo por 'Filtrado bilateral', (aplicación en línea de comandos)


Python

estrellaestrellaestrellaestrellaestrella(2)
Actualizado el 23 de Mayo del 2024 por Antonio (76 códigos) (Publicado el 20 de Marzo del 2023)
6.957 visualizaciones desde el 20 de Marzo del 2023
Programa para realizar filtrado de imagen en archivos de vídeo (preferiblemente de corta duración) utilizando el algoritmo de 'filtrado bilateral' pudiendo especificar los valores sigma de espacio y color y el diámetro del vecindario para cada pixel. Los vídeos filtrados se generan, por defecto, conservando su sonido, aunque se pueden generar sin este introduciendo el argumento '-ae'/'--exclude_audio'.

ARGUMENTOS:
-src/--source: Nombre del vídeo original (OBLIGATORIO)
-dest/--destination: Nombre del video a generar ('NewFilteredVid.mp4' por defecto)
-sgc/--sigma_color: Valor sigma para espacio de color (75 por defecto)
-sgs/--sigma_space: Valor sigma espacial (75 por defecto)
-pd/--pixel_diameter: Diámetro de la vecindad de píxeles (9 por defecto)
-ae/--exclude_audio: Excluir audio y generar video sin sonido (OPCIONAL)

PARA CUALQUIER DUDA U OBSERVACIÓN UTILIZEN LA SECCIÓN DE COMENTARIOS
bvf
bvf2
bvf3
bvf4
Imágen de perfil

Recordatorio, descenso con momentum


Python

Publicado el 23 de Mayo del 2024 por Hilario (128 códigos)
163 visualizaciones desde el 23 de Mayo del 2024
Figure_1

***********************************************************************************************************************
Aula_28_repaso_descenso_momentum.py
+++++++++++++++++++++++++++++++++++
Dado que existen numerosas dudas sobre la aplicación de momentúm a un descenso de gradiente.
Vamos a explicar, lo más fácil posible, en que consiste, aunquue se miráis hacía atrás encontrareis
ejercicios en esta WEB, en la que se habla de este tema con ejercicios de ejemplo.

Sí suponéis una función ondulada, sobre dos ejes coordenados, en que el eje y tiene los valores de pérdida, y el eje x tiene los valores de parámetros o entradas. Esta función ondulada tendrá diversos, valores locales mínimos, y un valor, digamos, global mínimo.
Al aplicar un momentum, lo que hacemos es que en estos valles el descenso de gradiente no se relentice, hasta llegar global mínimo.

Bien, vamos a concretar en el siguiente resumen, las particulatidades del momentum.
Luego, plantearemos el sencillo ejercicio: Aula_28_repaso_descenso_momentum.py, para ver su funcionamiento real.

*****************************************************************************************************************

El descenso de gradiente con momentum (o SGD con momentum, por sus siglas en inglés) es una variación del algoritmo de descenso de gradiente estocástico (SGD) que se utiliza para entrenar redes neuronales y otros modelos de aprendizaje automático.

El objetivo del descenso de gradiente es encontrar los parámetros óptimos de un modelo que minimicen la función de error.
En el caso de las redes neuronales, la función de error representa la diferencia entre las predicciones del modelo y los datos reales.

El descenso de gradiente funciona iterativamente, ajustando los parámetros del modelo en la dirección del gradiente negativo de la función de error. Esto significa que los parámetros se mueven en la dirección hacía abajo que más reduce el error.
Sin embargo, el descenso de gradiente estándar puede ser sensible al ruido en los datos y puede quedar atrapado en mínimos locales, los valles de los que hablamos anteriormente.

Aquí es donde entra en juego el momentum. El momentum introduce una especie de "memoria" en el algoritmo, lo que le permite tener en cuenta los gradientes anteriores al actualizar los parámetros. Esto ayuda a suavizar las actualizaciones y a evitar
que el algoritmo se quede oscilando o se atasque en mínimos locales.

En términos matemáticos, el momentum se implementa mediante un término adicional en la ecuación de actualización de los parámetros.
Este término es proporcional al gradiente promedio de las iteraciones anteriores y ayuda a impulsar los parámetros en la misma dirección según los cálculos más favorables para un descenso que sea optimizado.

El uso del momentum tiene varias ventajas:

Aumenta la velocidad de convergencia: El momentum puede ayudar a que el algoritmo converja al mínimo global de la función de error más rápidamente.

Reduce las oscilaciones: El momentum ayuda a suavizar las actualizaciones de los parámetros, lo que puede reducir las oscilaciones en la trayectoria del aprendizaje.

Escapa de los mínimos locales: El momentum puede ayudar al algoritmo a escapar de los mínimos locales, que son puntos en los que la función de error es localmente mínima pero no globalmente mínima.

El momentum se controla mediante un hiperparámetro llamado coeficiente de momentum, que suele estar entre 0 y 1. Un valor más alto del coeficiente de momentum da más importancia a los gradientes anteriores y puede aumentar la velocidad de convergencia, pero también puede hacer que el algoritmo sea más sensible al ruido.

En general, el descenso de gradiente con momentum es una técnica poderosa para entrenar redes neuronales y otros modelos de aprendizaje automático.
Es más rápido y más robusto que el descenso de gradiente estándar, y puede ayudar a mejorar el rendimiento general del modelo.

********************************************************************************************************************
Como dijimos anteriormente proponemos ahora el ejercicio:
Aula_28_repaso_descenso_momentum.py, que pasamos a explicar:

1-Lo primero que hacemos es importar las librerías necesarias.

En nuestro caso: Se importan las librerías necesarias: numpy para cálculos numéricos y matplotlib.pyplot para graficar los resultados.

2-Definimos la Función de Pérdida y su Gradiente.

# Función de pérdida (En nuestro caso escogemos un ejemplo simple: f(x) = x^2)
def loss_function(x):
return x**2

# Gradiente o derivada de la función de pérdida
def gradient(x):
return 2*x

3- Ahora definimos los arámetros Iniciales.

x = np.random.randn() # Con el fin de no complicarnos la vida
utilizamos random en una inicialización aleatoria de los valores de x.
learning_rate = 0.1 Esto sería el ratio de aprendizaje.
momentum = 0.9 El coeficiente del momento
velocity = 0 Y lo inicializamos con un valor 0.

4- Almacenamiento de Pérdidas con el fin de poder realizar la gráfica.
losses = [ ]

5- Ahora lo que tenemos que hacer es el bucle de entrenamiento.

Iteraciones de entrenamiento con 200 iteraciones o ciclos.

for i in range(200):
grad = gradient(x)
velocity = momentum * velocity - learning_rate * grad
x += velocity
loss = loss_function(x)
losses.append(loss)
print(f"Iteración {i+1}, x: {x}, Loss: {loss}")

El bucle de entrenamiento se ejecuta durante 200 iteraciones. En cada iteración
Se calcula el gradiente de la función de pérdida en el punto actual
Se actualiza la velocidad usando la fórmula del momentum:
Se actualiza el valor de x, sumándole la velocidad: velocity x += velocity.
Se calcula la pérdida actual usando la función de pérdida.
Se almacena el valor de la pérdida en la lista losses.
Se imprime el número de iteración, el valor de x, conla pérdida correspondiente.


5-Con el fin de hacer más intuitivo el ejercicio graficamos las pérdidas.

plt.plot(losses)
plt.xlabel('Iteración')
plt.ylabel('Pérdida')
plt.title('Descenso de Gradiente con Momentum')
plt.show()

---------------------------------------------------------------------------
--------------------------------------------------------------------------
Para este ejercicio hemos utilizado una plataforma Linux, con Ubuntu 20.04.6 LTS.
Lo hemos editado con Sublite text.
La versión de python es la 3.
Se debe tener cargado para su importación en el sistema, estos módulos:
import numpy as np
import matplotlib.pyplot as plt
*****************************************************
Ejecución bajo consola linux:
python3 Aula_28_repaso_descenso_momentum.py

*****************************************************