Mostrar los tags: numpy

Mostrando del 1 al 4 de 4 coincidencias
<<>>
Se ha buscado por el tag: numpy
Imágen de perfil
Actualizado

Lector, por cámara, de códigos "QR"


Python

estrellaestrellaestrellaestrellaestrella(12)
Actualizado el 25 de Mayo del 2024 por Antonio (76 códigos) (Publicado el 22 de Abril del 2020)
42.607 visualizaciones desde el 22 de Abril del 2020
El programa tiene como objeto principal, la lectura, haciendo uso de la cámara web, de códigos QR. Para ello, simplemente pulsaremos el botón "INICIAR LECTURA POR CAMARA" (que desplegará el visor de la cámara) y colocaremos el código a leer, delante de la cámara. A su vez, también podremos leer códigos QR, en formato "png" y "jpg" almacenados en nuestra computadora (para lo que usaremos la opción "CARGAR ARCHIVO". Finalmente, también podremos leer, directamente, un código que se encuentre visible en pantalla (botón "DETECTAR EN PANTALLA").

qrcc
qrcm1
Imágen de perfil

Red Neuronal sólo con Numpy.


Python

Publicado el 16 de Mayo del 2024 por Hilario (126 códigos)
217 visualizaciones desde el 16 de Mayo del 2024
Aula_28_Recordatorio_Mayo.py
************************************

Bien, dada una matriz, con 8 característica, y 20 muestras.
Como la siguiente:

[[1.234 0.567 2.345 1.890 0.123 3.456 2.345 1.234]
[0.987 1.234 1.890 0.345 2.567 0.890 1.234 2.345]
[3.456 1.890 0.567 2.345 1.234 0.890 2.567 1.890]
[2.567 1.890 0.123 1.234 2.345 0.567 1.890 3.456]
[0.890 1.890 2.345 0.567 1.234 3.456 0.890 1.234]
[1.890 2.345 1.234 0.567 2.345 0.123 1.234 0.567]
[1.234 2.345 0.567 1.890 0.123 2.567 0.890 1.234]
[2.345 1.890 3.456 0.890 1.234 0.567 1.890 2.567]
[0.567 1.234 1.890 0.567 1.234 0.890 2.345 0.123]
[0.890 1.890 0.123 1.234 0.567 3.456 1.234 1.890]
[1.890 0.567 1.234 0.890 2.567 1.234 2.345 0.567]
[1.234 2.567 0.890 1.890 0.123 1.890 0.567 1.234]
[0.567 1.234 2.345 1.890 0.567 2.345 1.234 0.890]
[1.890 0.123 1.234 0.567 2.345 1.890 0.567 1.234]
[0.890 1.234 0.567 1.890 1.234 2.345 3.456 0.890]
[1.234 0.567 2.345 0.890 2.345 1.234 0.567 1.890]
[2.567 1.890 0.890 1.234 0.567 1.890 2.345 0.123]
[0.567 2.345 1.234 0.567 1.890 0.123 1.890 0.567]
[1.234 1.890 0.567 3.456 2.567 1.234 0.890 1.234]
[0.567 2.345 1.234 0.890 1.890 0.567 1.234 2.567]]


Planteamos una red neuronal sin utilizar ni keras ni tensorflow. Que entrena la red con esos valores, de 8 características, y 20 muestras o ejemplos.
Y que haga una prediccion de salida de la caracteristica correspondientes, a esta muestra dada:[1.345 2.890 0.456 1.890 12.234 10.567 1.890 12.567].

El ejercicio, tendría básicamente estos pasos:

1-Definición de funciones de activación y pérdida:
*******************************************************
Se define la función de activación ReLU (relu) y su derivada (relu_derivative).
ReLU es una función de activación comúnmente utilizada en redes neuronales debido a su simplicidad y buen desempeño en muchas tareas.
Se define la función de pérdida de error cuadrático medio (mean_squared_error).
Esta función calcula la diferencia cuadrática media entre las predicciones y las etiquetas verdaderas.

2-Implementación de la red neuronal:
*****************************************
Se crea una clase NeuralNetwork que representa una red neuronal de dos capas (una capa oculta y una capa de salida).
En el método __init__, se inicializan los pesos y sesgos de la red neuronal de manera aleatoria.
En el método forward, se realiza la propagación hacia adelante, calculando las salidas de la red neuronal.
En el método backward, se realiza la retropropagación del error, calculando los gradientes de los pesos y sesgos y actualizándolos utilizando el algoritmo de descenso de gradiente.
El método train entrena la red neuronal utilizando los datos de entrada y las etiquetas verdaderas durante un número específico de épocas.
El método predict realiza predicciones utilizando la red neuronal entrenada.

3-Entrenamiento de la red neuronal:
********************************
Se definen los datos de entrada (X_train) y las etiquetas verdaderas (y_train).
Los datos se normalizan dividiéndolos por su máximo valor para asegurar que estén en el rango [0, 1].
Se crea una instancia de la red neuronal con el tamaño de entrada, tamaño oculto y tamaño de salida dados.
La red neuronal se entrena utilizando los datos de entrenamiento durante 10000 épocas con una tasa de aprendizaje de 0.01.

4-Predicción:
*****************
Se define un nuevo conjunto de datos de entrada (X_new) para realizar una predicción.
Los datos de entrada se normalizan de la misma manera que los datos de entrenamiento.
Se realiza una predicción utilizando la red neuronal entrenada.
El resultado de la predicción se desnormaliza multiplicándolo por el máximo valor de las etiquetas verdaderas.
Se muestra el resultado de la predicción.

Según vemos su desarrollo podemos decir, que este ejercicio muestra cómo implementar una red neuronal básica desde cero en Python sin utilizar bibliotecas como Keras o TensorFlow. La red neuronal se entrena utilizando el algoritmo de retropropagación y se prueba haciendo una predicción sobre nuevos datos de entrada.

El alumno podrá interactuar con el ejercicio, modificando parametros como
valores de entrada, caracteristicas y muestras, para su mejor comprensión.



UNA SALIDA DEL EJERCICIO, PODRÍA SER LA SIGUIENTE:
****************************************************************************
Epoch 0, Loss: 11.7756050562224
Epoch 1000, Loss: 0.012417106163412383
Epoch 2000, Loss: 0.004855440981664029
Epoch 3000, Loss: 0.002804630823301262
Epoch 4000, Loss: 0.0019105925868362645
Epoch 5000, Loss: 0.0013765944597636112
Epoch 6000, Loss: 0.0010168157428455883
Epoch 7000, Loss: 0.0007730551039343544
Epoch 8000, Loss: 0.0006225694864747496
Epoch 9000, Loss: 0.0005176777148262488
Predicción de salida: [[-0.55685326 -0.9034264 -1.02152184 0.87943007 0.40507882 1.91684935
0.28005875 2.23286946]]
[Finished in 701ms]

***********************************************************************
El ejercicio fue realizado bajo plataforma linux.
Ubuntu 20.04.6 LTS.
Editado con Sublime text.
Ejecución:
python3 Aula_28_Recordatorio_Mayo.py
***********************************************************************
Imágen de perfil

Calculadora de Matrices.


Python

Actualizado el 9 de Julio del 2021 por Antonio (76 códigos) (Publicado el 13 de Marzo del 2020)
15.362 visualizaciones desde el 13 de Marzo del 2020
Script para realizar sumas, restas y multiplicaciones, con matrices, o con valores numéricos.
cam
Imágen de perfil

Graficador de funciones


Python

estrellaestrellaestrellaestrellaestrella(3)
Publicado el 23 de Febrero del 2020 por Antonio (76 códigos)
7.606 visualizaciones desde el 23 de Febrero del 2020
Script para graficar funciones sencillas mediante la introducción del rango de X y la expresión a representar.
graficador