Código de Python - Comprobar eficacia, código CNN.

Imágen de perfil

Comprobar eficacia, código CNN.gráfica de visualizaciones


Python

Publicado el 6 de Marzo del 2024 por Hilario (126 códigos)
191 visualizaciones desde el 6 de Marzo del 2024
IMAGEN A PREDECIR.
-----------------------------

zapato

El codigo de estudio, fue recogido en la página oficial de Tensorflow, con el Copyright (c) 2017 de François Chollet.

Ver nota final de uso.
Lo que trato con este ejercicio, es añadirle un tramo de código, con el fin de probar su eficacia al añadirle la predicción de una imagen aportada por mí.
Por lo que pude apreciar, los resultados no son del todo halagueños.


# Copyright (c) 2017 François Chollet
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.

Requerimientos

Ejecutado bajo plataforma Linux.
Ubuntu 20.04.6 LTS
Editado con Sublime Text.

V.O.

Publicado el 6 de Marzo del 2024gráfica de visualizaciones de la versión: V.O.
192 visualizaciones desde el 6 de Marzo del 2024
estrellaestrellaestrellaestrellaestrella
estrellaestrellaestrellaestrella
estrellaestrellaestrella
estrellaestrella
estrella

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# TensorFlow y tf.keras
import tensorflow as tf
from tensorflow import keras
 
# Librerias de ayuda
import numpy as np
import matplotlib.pyplot as plt
 
 
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
import numpy as np
 
 
print(tf.__version__)
fashion_mnist = keras.datasets.fashion_mnist
 
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
train_images.shape
len(train_labels)
train_labels
test_images.shape
len(test_labels)
plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
plt.show()
 
train_images = train_images / 255.0
 
test_images = test_images / 255.0
plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i]])
plt.show()
model = keras.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(128, activation='relu'),
    keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=20)
test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
 
print('\nTest accuracy:', test_acc)
predictions = model.predict(test_images)
np.argmax(predictions[0])
test_labels[0]
def plot_image(i, predictions_array, true_label, img):
  predictions_array, true_label, img = predictions_array, true_label[i], img[i]
  plt.grid(False)
  plt.xticks([])
  plt.yticks([])
 
  plt.imshow(img, cmap=plt.cm.binary)
 
  predicted_label = np.argmax(predictions_array)
  if predicted_label == true_label:
    color = 'blue'
  else:
    color = 'red'
 
  plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
                                100*np.max(predictions_array),
                                class_names[true_label]),
                                color=color)
 
def plot_value_array(i, predictions_array, true_label):
  predictions_array, true_label = predictions_array, true_label[i]
  plt.grid(False)
  plt.xticks(range(10))
  plt.yticks([])
  thisplot = plt.bar(range(10), predictions_array, color="#777777")
  plt.ylim([0, 1])
  predicted_label = np.argmax(predictions_array)
 
  thisplot[predicted_label].set_color('red')
  thisplot[true_label].set_color('blue')
  i = 0
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i],  test_labels)
plt.show()
i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i],  test_labels)
plt.show()
# Plot the first X test images, their predicted labels, and the true labels.
# Color correct predictions in blue and incorrect predictions in red.
num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
  plt.subplot(num_rows, 2*num_cols, 2*i+1)
  plot_image(i, predictions[i], test_labels, test_images)
  plt.subplot(num_rows, 2*num_cols, 2*i+2)
  plot_value_array(i, predictions[i], test_labels)
plt.tight_layout()
plt.show()
# Grab an image from the test dataset.
img = test_images[1]
 
print(img.shape)
# Add the image to a batch where it's the only member.
img = (np.expand_dims(img,0))
print(img.shape)
predictions_single = model.predict(img)
print(predictions_single)
plot_value_array(1, predictions_single[0], test_labels)
_ = plt.xticks(range(10), class_names, rotation=45)
np.argmax(predictions_single[0])
# Guardar el modelo en un archivo .h5
#model.save('/home/margarito/python/HILARIO-modelo.h5')
#************************************************************************************
#Código añadido por mi para comprobación de la eficacia.
# Cargar la imagen de la prenda y redimensionarla
imagen_ruta = '/home/margarito/python/zapato.jpg'
img = image.load_img(imagen_ruta, target_size=(28, 28), color_mode='grayscale')  # Cambia a escala de grises
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array = preprocess_input(img_array)
# Imprimir las dimensiones de la imagen antes de la adaptación
print("Dimensiones de la imagen de entrada antes de la adaptación:", img_array.shape)
# Hacer la predicción
prediccion = model.predict(img_array)
# Decodificar la salida para obtener la clase predicha
clase_predicha = np.argmax(prediccion)
probabilidad_prediccion = np.max(prediccion)
# Imprimir la clase predicha y la probabilidad
# Decodificar la salida para obtener la clase predicha
clase_predicha = np.argmax(prediccion)
probabilidad_prediccion = np.max(prediccion)
# Imprimir la clase predicha y la probabilidad
print("La prenda en la imagen es de tipo:", class_names[clase_predicha])
print("Probabilidad:", probabilidad_prediccion)



Comentarios sobre la versión: V.O. (0)


No hay comentarios
 

Comentar la versión: V.O.

Nombre
Correo (no se visualiza en la web)
Valoración
Comentarios...
CerrarCerrar
CerrarCerrar
Cerrar

Tienes que ser un usuario registrado para poder insertar imágenes, archivos y/o videos.

Puedes registrarte o validarte desde aquí.

Codigo
Negrita
Subrayado
Tachado
Cursiva
Insertar enlace
Imagen externa
Emoticon
Tabular
Centrar
Titulo
Linea
Disminuir
Aumentar
Vista preliminar
sonreir
dientes
lengua
guiño
enfadado
confundido
llorar
avergonzado
sorprendido
triste
sol
estrella
jarra
camara
taza de cafe
email
beso
bombilla
amor
mal
bien
Es necesario revisar y aceptar las políticas de privacidad

http://lwp-l.com/s7500