Mostrar los tags: re

Mostrando del 1 al 10 de 858 coincidencias
<<>>
Se ha buscado por el tag: re
Imágen de perfil
Actualizado

Generador de gifs a partir de video, en línea de comandos.


Python

estrellaestrellaestrellaestrellaestrella(4)
Actualizado el 31 de Mayo del 2024 por Antonio (76 códigos) (Publicado el 9 de Diciembre del 2022)
8.451 visualizaciones desde el 9 de Diciembre del 2022
Programa para generar gifs animados a partir de vídeos, que se ejecuta en la línea de comandos.
ARGUMENTOS:
-src/--source: Nombre del vídeo original (obligatorio).
-dest/--destination: Nombre del archivo a generar (opcional).
-sz/--size: Tamaño en porcentaje del gif respecto al vídeo original (opcional).
-shw/--show: Muestra resultado en ventana emergente al finalizar el proceso de generado (opcional).
-st/--start: Segundo inicial para gif (opcional).
-e/--end: Segundo final (opcional).
-spd/--speed: Velocidad relativa de la animación (opcional)

PARA CUALQUIER DUDA U OBSERVACIÓN, USEN LA SECCIÓN DE COMENTARIOS.

mk
sin imagen de perfil

Impresiones Xml


C sharp

Publicado el 27 de Mayo del 2024 por Elías Gabriel (3 códigos)
137 visualizaciones desde el 27 de Mayo del 2024
Definí un lenguaje Xml para generar salidas por la impresora, así como también un programa que lea los archivos Xml e imprima los mismos. Quizá pueda resultar útil para alguien que desee hacer salidas por impresora sin escribir código C#, sino escribiendo un archivo Xml y utilizando una librería que se incluye en el código (PrintFramework.dll). El programa tan sólo es una utilización de esa librería para poder apreciar cómo funciona la misma. Dentro del archivo comprimido está el código escrito en SharpDevelop y también un archivo de texto con las instrucciones para escribir los archivos xml para ser parseados por la librería, así como una reseña acerca del uso de la misma.
Imágen de perfil
Actualizado

CALCULADORA DE DIVISAS


Python

Actualizado el 25 de Mayo del 2024 por Antonio (76 códigos) (Publicado el 3 de Mayo del 2024)
338 visualizaciones desde el 3 de Mayo del 2024
Programa para convertir cantidades de moneda a otras divisas (el programa muestra la tasa de cambio y el equivalente en la otra moneda) usando datos actualizados.

cuc
PARA CUALQUIER DUDA U OBSERVACIÓN USEN LA SECCIÓN DE COMENTARIOS.
Imágen de perfil

Cx_Contabilidad Financiera


Visual Basic

estrellaestrellaestrellaestrellaestrella(7)
Actualizado el 23 de Mayo del 2024 por Rafael (22 códigos) (Publicado el 21 de Diciembre del 2022)
22.825 visualizaciones desde el 21 de Diciembre del 2022
Cx es un programa para Windows.
Sirve para gestionar la contabilidad.
Produce: libro diario, auxiliar,
balanzas, recapitulación, estados financieros,
balance general, estado de pérdidas y ganancias,
estado de resultados y estados de cuentas.
Servosistema que administra
la oficina sin papeles.
Multiusuario cliente/servidor, red inalámbrica.
Código abierto. Trabajo a distancia.
Adjunto Cx Guía del rey de la creación

Sin-titulo
Imágen de perfil

Aplicación de la función ReLU a cada píxel.


Python

Publicado el 29 de Abril del 2024 por Hilario (127 códigos)
142 visualizaciones desde el 29 de Abril del 2024
Figure_1
original
******************************************************
********************************************************

Aula_28_Aplicar_Relu.py
*****************************
Este ejercicio que proponemos es sumamente sencillo. No por ello es importante dentro del desarrollo de redes neuronales.
Lo hacemos con el fin de aplicar una funcion Relu auna imagen, en un proceso usual dentro de las redes neuronales.

Indiquemos brevemente lo que es una funcion RELU.
---------------------------------------------------------------------
La función ReLU (Rectified Linear Unit) es una función de activación comúnmente utilizada en redes neuronales
y otras técnicas de aprendizaje automático. Se define matemáticamente de la siguiente manera:

f(x)={ 0,x
si x≤0
si x>0
​O en otras palabras, de forma más sencilla,
la función ReLU devuelve 0 para todos los valores de entrada que son negativos o iguales a cero,
y devuelve el mismo valor de entrada para valores positivos.

En el contexto de redes neuronales, la función ReLU se utiliza típicamente como función de activación
en las capas ocultas debido a su simplicidad y eficiencia computacional. Permite la introducción
de no linealidades en el modelo, lo que ayuda a que la red neuronal pueda aprender
representaciones más complejas de los datos de entrada.
*************************************************************************************************
En este ejercicio pretendemos aplicar esta función a una imagen dimensionada previamente.

Pasamos a explicar el mismo con poco de detalle.
1-Importa las bibliotecas necesarias:
numpy para el procesamiento numérico y matplotlib.pyplot para visualizar la imagen.

import numpy as np
import matplotlib.pyplot as plt

-------------------------------------------------------------------------
2-Definimos una función llamada apply_relu que toma
una imagen como entrada y aplica la función ReLU a cada píxel de la imagen.

def apply_relu(imagen):
alto, ancho, canales = imagen.shape
imagen_relu = np.zeros_like(imagen)
for i in range(alto):
for j in range(ancho):
for k in range(canales):
imagen_relu[i, j, k] = max(0, imagen[i, j, k])
return imagen_relu

-----------------------------------------------------------------------------------------
3- Carga la imagen desde un archivo. En este caso, la ruta del archivo es
/home/margarito/python/imagen.jpg.
En vuestro caso deberéis modificar esta ruta con la situación del archivo imagen.
imagen = plt.imread('/home/margarito/python/imagen.jpg')
-----------------------------------------------------------------------------------------

4-Obtiene las dimensiones de la imagen (alto y ancho) utilizando la función shape.

alto, ancho, _ = imagen.shape
----------------------------------------------------------------------------------
5-Muestra la imagen original utilizando plt.imshow.

plt.imshow(imagen)
plt.title('Imagen Original')
plt.axis('off')
plt.show()

-----------------------------------------------------------------------------------
6-Aplica la función ReLU a la imagen cargada utilizando la función apply_relu definida anteriormente

imagen_relu = apply_relu(imagen)
---------------------------------------------------------------------------------------
7-Muestra la imagen después de aplicar la función ReLU utilizando plt.imshow.
plt.imshow(imagen_relu)
plt.title('Imagen aplicando la función ReLU')
plt.axis('off')
plt.show()

*************************************************************************************

Como se puede comprobar apenas existe una modificación visible, entre las dos
imagenes, antes y después de aplicar la función Relu.
Esto puede ser debido a que los valores negativos son escasos en el array 2D de la imagen.
********************************************************************************************************
---------------------------------------------------------------------------------------------------
Este ejercicio fue ejecutado en una plataforma Linux, Ubuntu 20.04.6 LTS.
Editado con Sublime Text.

Para que su funcionamiento y ejecucion sea correcto
se deberá de tener instalado en vuestro sistema
la versión numpy-1.24.4.
Es conveniente hacer este comando en consola, para actualizarlo:

pip install --upgrade numpy
************************************************************************
Ejecución del ejercicio en linea bajo consola:
python3 Aula_28_Aplicar_Relu.py
-----------------------------------------------------------------------
Imágen de perfil

Buscador de archivos mediante expresiones regulares (nueva versión)


Python

Actualizado el 27 de Abril del 2024 por Antonio (76 códigos) (Publicado el 5 de Mayo del 2022)
2.457 visualizaciones desde el 5 de Mayo del 2022
Programa para buscar archivos mediante expresiones regulares.
COMANDOS:
cbd <dir> cambia el directorio base.
sch <string> realiza búsqueda por el sistema de carpetas a partir de la carpeta base.
cl realiza limpieza de pantalla.
help muestra lista de comandos.
q finaliza programa.

PARA CUALQUIER DUDA U OBSERVACIÓN, USEN LA SECCIÓN DE COMENTARIOS.
ff43
ff42
ff41
Imágen de perfil

Visor de gráficos financieros.


Python

estrellaestrellaestrellaestrellaestrella(2)
Actualizado el 1 de Abril del 2024 por Antonio (76 códigos) (Publicado el 7 de Julio del 2021)
9.354 visualizaciones desde el 7 de Julio del 2021
El programa muestra información relativa al precio máximo, mínimo, de apertura y cierre de un activo financiero (estos se irán almacenando en el archivo "symbols" que se generará al ejecutar el programa por primera vez) y para un periodo de tiempo. También muestra los gráficos relativos a las medias móviles exponenciales de 50 y 200 sesiones.
PARA CUALQUIER DUDA U OBSERVACIÓN USEN LA SECCIÓN DE COMENTARIOS.
gf
Imágen de perfil

Red neuronal CNN, detección de clases.


Python

Publicado el 24 de Marzo del 2024 por Hilario (127 códigos)
357 visualizaciones desde el 24 de Marzo del 2024
CLASES DE IMAGENES CON UNA MUESTRA DE CADA UNA.
-----------------------------------------------------------------------------------
Figure_1
Figure_2
Figure_3
Figure_4
Figure_5

***************************************************************
IMAGEN PROPUESTA A EVALUAR.
------------------------------------------------------------------------------

imagen

****************************************************************************************************************
TUTORIAL DEL EJERCICIO.
--------------------------------------
Este ejercicio que propongo hoy, está realizado con el fin de entender la dinámica, o forma de realizar una red neuronal CNN.

Está compuesto por tres códigos:

1- Aula_28_Descarga_Imagenes.py
-------------------------------
En este primer código accedemos a:
dataset_url = https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz"

De donde descargamos las imagenes necesarias para realizar el posterior modelo.
Las imagenes se guardaran, en nuestro usuario de Linux -Ubuntu-, en un fichero oculto (.Keras),
en un directorio llamado Datasets, en mi caso con la siguiente ruta: /home/margarito/.keras/datasets/flower_photos.
En el directorio:flower_photos, encontraremos las imagenes de las flores, con las clases a que corresponden.

Tres directorios con imágenes de estas clases:

-flower_photos
--daisy
--dandelion
--roses
--sunflowers
--tulips

Con el fin de utilizar estas imagenes de forma indirecta, copiaremos el directorio:-flower_photos
y lo pegaremos en nuestro directorio de usuario.
Al ejecutar este código, se muestra una imagen de cada clase.
---------------------------------------------------
Librerías necesarias a cargadas en vuestro sistema para la ejecución de este código:

import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
import tensorflow as tf

from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
import pathlib


*************************************************************************************************************
2-Aula_28_Entreno_Modelo.py
--------------------------
Con este código, lo que hacemos es entrenar el modelo, salvandolo una vez entrenado en nuestro usuario, en el directorio donde tengamos nuestros códigos.

Básicamente este código hace lo siguiente:

Este código en Python utiliza TensorFlow y Keras para construir y entrenar una red
neuronal convolucional (CNN) para clasificar imágenes de flores. Aquí está el desglose de lo que hace cada parte del código:

Importación de bibliotecas:
Importa TensorFlow y algunas clases específicas
de Keras necesarias para el procesamiento de imágenes.

Definición de directorios y ruta del modelo:
Establece las rutas de los directorios donde se encuentran
los datos de entrenamiento de imágenes de flores y donde se guardará el modelo entrenado.

Parámetros de entrenamiento:
Define los parámetros para el entrenamiento,
como el tamaño del lote, la altura y el ancho de las imágenes, y el número de épocas.

Generador de datos de entrenamiento:
Crea un generador de datos de imágenes de entrenamiento
utilizando la clase ImageDataGenerator de Keras.
Esta clase realiza aumento de datos, como escalamiento, recorte, volteo horizontal, etc.

Configuración de generadores de flujo de datos de entrenamiento
y validación:
Configura los generadores de flujo de datos
de entrenamiento y validación utilizando el directorio de datos
de entrenamiento y especificando la división para la validación.

Creación del modelo CNN:
Define el modelo de la CNN utilizando
Sequential de Keras, que es una pila lineal de capas.
El modelo consta de varias capas convolucionales y de agrupación (pooling),
seguidas de capas totalmente conectadas. La última capa utiliza una función
de activación softmax para la clasificación de las clases de flores.

Compilación del modelo:
Compila el modelo especificando el optimizador,
la función de pérdida y las métricas para el entrenamiento.

Entrenamiento del modelo:
Entrena el modelo utilizando los generadores de flujo de datos de entrenamiento y validación.

Guardado del modelo:
Guarda el modelo entrenado en la ruta especificada.

Mensaje de finalización:
Imprime un mensaje para indicar que el modelo ha sido entrenado y guardado correctamente.

Como podéis apreciar, en mi caso de linux, las rutas donde tengo los datos,
y el lugar donde gusrado el modelo, es el siguiente:
# Rutas de los directorios de datos
train_dir = '/home/margarito/python/flower_photos'
model_path = '/home/margarito/python/Mi_Modelo_Hilario.h5'
******************************************************************************************************************

Librerías necesarias a cargadas en vuestro sistema para la ejecución de este código:
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
-------------------------------------------------------------------------------------
3-Aula_28_Probar_Modelo.py
-------------------------
Con este código voy a probar el modelo.
En mi caso he sacado una fotografia, a una flor silvestre de diente de leon,
con el fin de evaluar el acierto de mi programa.
Este programa podría resumirse de la siguiente forma:

Este código realiza la inferencia de una imagen de flor utilizando un modelo de red neuronal convolucional (CNN) previamente entrenado. Aquí está el desglose de lo que hace cada parte del código:

Importación de bibliotecas:
Importa las bibliotecas necesarias, incluyendo NumPy para manipulación de matrices
y TensorFlow para el uso del modelo y la preprocesamiento de imágenes.

Cargar el modelo previamente entrenado:
Carga el modelo de CNN previamente entrenado desde la ruta especificada en modelo_ruta.

Ruta de la imagen de la flor:
Define la ruta de la imagen de la flor que se desea clasificar.

Cargar y redimensionar la imagen:
Carga la imagen de la flor desde la ruta especificada
y la redimensiona al tamaño requerido por el modelo, que es 224x224 píxeles.

Convertir la imagen a un array numpy:
Convierte la imagen cargada en un array numpy para que pueda ser procesada por el modelo.

Preprocesamiento de la imagen:
Realiza cualquier preprocesamiento necesario en la imagen, en este caso,
expandiendo las dimensiones del array para que coincida con el formato de entrada esperado por el modelo.

Normalización de los valores de píxeles:
Normaliza los valores de píxeles de la imagen para que estén en el rango de 0 a 1,
lo que es comúnmente necesario para la entrada de los modelos de redes neuronales.

Hacer la predicción:
Utiliza el modelo cargado para realizar la predicción en la imagen preprocesada.

Obtener la clase predicha:
Identifica la clase predicha asignando etiquetas de clases a las salidas del modelo
y seleccionando la clase con el valor de probabilidad más alto.

Imprimir la clase predicha:
Imprime la clase predicha de la flor en la imagen.

En resumen, este código toma una imagen de una flor,
la procesa adecuadamente para que pueda ser ingresada
al modelo, la clasifica utilizando el modelo
previamente entrenado y luego imprime la
clase predicha de la flor en la imagen.
------------------------------------------------------
Librerías necesarias a cargadas en vuestro sistema para la ejecución de este código:

import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing import image

*********************************************************************************
Estos ejercicios han sido realizados y ejecutados bajo consola linux.
Concretamente bajo Ubuntu 20.04.6 LTS.
Fueron editados con Sublime text.

Debereis de tener en cuenta que para la ejecución de los ejercicios
deberéis tener instaladas las librerías y módulos necesarios, segfún se indica en cada código.
----------------------------------------------

SALIDA, EN MI CASO DEL EJERCICIO DE LA IMAGEN PROPUESTA DE EVALUACIÓN:

2024-03-24 12:47:54.765845: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2024-03-24 12:47:54.797982: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2024-03-24 12:47:54.798348: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-03-24 12:47:55.329900: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT

1/1 [==============================] - ETA: 0s
1/1 [==============================] - 0s 114ms/step
La flor en la imagen es: dandelion
[Finished in 2.9s]
Imágen de perfil

Crear Módulo Transferencia Aprendizaje.


Python

Publicado el 16 de Enero del 2024 por Hilario (127 códigos)
222 visualizaciones desde el 16 de Enero del 2024
python3 Repaso_Aula_28.py
*************************


Ejercicio sencillo para Aula-28.
*******************************
Queremos generar un módulo para posteriores entrenamientos utilizando transferencia de aprendizaje.

A nuestro módulo lo llamaremos:MODULO-HIM.h5
Lo guardaré en esta ruta de mi ordenador: save_path = "/home/margarito/python/MODULO-HIM.h5"

Suponemos que en nuestro ordenador tenemos las imagenes de entrenamiento, que deberán guardar básicamente según este este esquema. En el caso de mi ordenador sería el siguiente:

/home/margarito/python/HIM/
|-- train/
| |-- dog/
| | |-- imagen1.jpg
| | |-- imagen2.jpg
| | |-- ...
| |
| |-- flores/
| | |-- imagen1.jpg
| | |-- imagen2.jpg
| | |-- ...
| |
| |-- ...
|
|-- test/
| |-- dog/
| | |-- imagen1.jpg
| | |-- imagen2.jpg
| | |-- ...
| |
| |-- flores/
| | |-- imagen1.jpg
| | |-- imagen2.jpg
| | |-- ...
| |
| |-- ...


Epoch.
*******
Epoch 1/10
2/2 [==============================] - 3s 615ms/step - loss: 0.6765 - accuracy: 0.5472
Epoch 2/10
2/2 [==============================] - 2s 875ms/step - loss: 0.6293 - accuracy: 0.5660
Epoch 3/10
2/2 [==============================] - 2s 566ms/step - loss: 0.5859 - accuracy: 0.6415
Epoch 4/10
2/2 [==============================] - 2s 880ms/step - loss: 0.5429 - accuracy: 0.8491
Epoch 5/10
2/2 [==============================] - 2s 571ms/step - loss: 0.5003 - accuracy: 0.8679
Epoch 6/10
2/2 [==============================] - 2s 564ms/step - loss: 0.4556 - accuracy: 0.8868
Epoch 7/10
2/2 [==============================] - 2s 889ms/step - loss: 0.4191 - accuracy: 0.8868
Epoch 8/10
2/2 [==============================] - 2s 864ms/step - loss: 0.3714 - accuracy: 0.8491
Epoch 9/10
2/2 [==============================] - 2s 884ms/step - loss: 0.3436 - accuracy: 0.9057
Epoch 10/10
2/2 [==============================] - 2s 869ms/step - loss: 0.3403 - accuracy: 0.9245



*************************************************************************************************************
El ejercicio es realizado en plataforma Linux.
Concretamente en:Ubuntu 20.04.6 LTS.
Fue editado con:Sublime text.
Ejecución bajo consola Linux:python3 Repaso_Aula_28.py

***************************************************************************************************************