Mostrar los tags: c

Mostrando del 21 al 30 de 2.840 coincidencias
Se ha buscado por el tag: c
Imágen de perfil

CALENARIO


C sharp

Publicado el 6 de Marzo del 2024 por Benito De Jesus
225 visualizaciones desde el 6 de Marzo del 2024
calendario en base a inicio de semana domingo, especial para empresas que manejan proceso de produccion semanal como bananeras
Calendario1
Imágen de perfil

Colector de links


Python

Actualizado el 2 de Marzo del 2024 por Antonio (76 códigos) (Publicado el 6 de Marzo del 2022)
3.556 visualizaciones desde el 6 de Marzo del 2022
Aplicación para guardar accesos directos a internet (que se guardan en un archivo 'json' que se genera al ejecutar el programa por primera vez), mediante la introducción de la URL en la entrada superior (o su copia mediante el botón 'IMPORT NEW LINK'). El nuevo acceso se guarda mediante el botón "SAVE LINK AS:" que abrirá una ventana pidiendo el nombre del nuevo acceso. Una vez guardado el acceso, se podrá acceder a la correspondiente página seleccionando, en la lista, el elemento guardado y clicando en el botón 'ACCESS' (admite selección normal y múltiple). También permite la eliminación la totalidad de los link o solo los seleccionados. También permite la búsqueda por nombre entre los accesos guardados. El botón "SAVE LIST" generará un archivo de texto con los nombres de enlace y sus correspondientes URLs asociadas, que estén almacenados en el archivo JSON.
PARA CUALQUIER DUDA U OBSERVACIÓN, USEN LA SECCIÓN DE COMENTARIOS.
LNKC
Imágen de perfil

PyTorch


Python

Publicado el 29 de Febrero del 2024 por Hilario (129 códigos)
292 visualizaciones desde el 29 de Febrero del 2024
Imagen a predecir.

***********************************************************
perro

********************************************************************************************************************

Propongo el ejercicio: Aula_18_Ejercicio_torch.py
Este ejercicio fue realizado con PyTorch.
En mi caso lo he editado con Sublime text, y lo he ejecutado bajo consola
con Ubuntu 20.04.6 LTS.

Si se tuviera problemas para ejecutarlo bajo consola linux, por sosportación CUDA, al no tener GPU Nvidia, se podría optar
por su edición y ejecución bajo Google Colab, utilizando Drive de Google, como almacenamiento.
*******************************************************************************************************************
El ejercicio, muestra la opción más posible por porcentajes, y nos remite a una página web para comprobar el resultado.

Vease una salida tipo:

SALIDA POR CONSOLA LINUX.
West Highland white terrier 0.7944785952568054
Maltese dog 0.025748323649168015
Norwich terrier 0.013491143472492695
Scotch terrier 0.0073037706315517426
cairn 0.005692108068615198
Para ver imágenes de 'West Highland white terrier', visita: https://www.google.com/search?q=West+Highland+white+terrier&tbm=isch

****************************************************************************************************************************************************************************************************************************************
PyTorch, un marco de trabajo de aprendizaje profundo (deep learning) de código abierto desarrollado por Facebook. PyTorch es conocido por su flexibilidad y facilidad de uso, y es utilizado tanto en la investigación académica como en la producción industrial para desarrollar y entrenar modelos de aprendizaje profundo.

A continuación, se describen algunos aspectos clave de PyTorch:

Tensores:
PyTorch utiliza tensores como su estructura de datos fundamental. Los tensores son similares a los arreglos multidimensionales de NumPy y pueden representar datos numéricos para entrenar modelos de aprendizaje profundo.
Autograd:
PyTorch incorpora un sistema de diferenciación automática llamado Autograd. Este sistema permite calcular automáticamente gradientes para los tensores, facilitando la retropropagación y el entrenamiento de modelos.
Dinámica de gráficos computacionales:
A diferencia de algunos otros marcos de trabajo de aprendizaje profundo que utilizan gráficos computacionales estáticos, PyTorch utiliza gráficos computacionales dinámicos. Esto proporciona flexibilidad al construir y modificar dinámicamente la estructura del grafo durante la ejecución.
API amigable:
PyTorch ofrece una API amigable y fácil de usar que facilita el proceso de experimentación y desarrollo. Esto ha contribuido a su popularidad en la comunidad de investigación y desarrollo de aprendizaje profundo.
Módulos para visión, procesamiento de lenguaje natural, etc.:

PyTorch cuenta con diversos módulos y paquetes, como torchvision para visión por computadora, torchtext para procesamiento de lenguaje natural, y otros, que facilitan el desarrollo de modelos en diversas áreas de aplicación.
Compatibilidad con GPU:
PyTorch está diseñado para aprovechar el rendimiento de las GPU para acelerar el entrenamiento de modelos. Esto se logra mediante la ejecución de operaciones en tensores en GPU cuando sea posible.

Comunidad activa y soporte:

PyTorch cuenta con una comunidad activa de usuarios y desarrolladores, y hay una amplia variedad de recursos, tutoriales y documentación disponible.
En resumen, PyTorch (o simplemente torch en referencia a su nombre de paquete) es un marco de trabajo de aprendizaje profundo que ha ganado popularidad debido a su flexibilidad, facilidad de uso y la adopción en la comunidad de investigación y desarrollo de inteligencia artificial.


********************************************************************************************************************
Este script de Python utiliza PyTorch y la biblioteca de visión de torchvision para cargar un modelo de red neuronal preentrenado
(GoogleNet) y realizar inferencias sobre una imagen específica. Aquí está una descripción paso a paso del código:

Importación de bibliotecas:
import torch
from PIL import Image
from torchvision import transforms

torch: Librería principal de PyTorch.
Image: Clase de la biblioteca Python Imaging Library (PIL) para trabajar con imágenes.
transforms: Módulo de torchvision que proporciona funciones para realizar transformaciones en imágenes, como cambiar el tamaño, recortar, etc.

***********************************************************************
Carga del modelo preentrenado:

model = torch.hub.load('pytorch/vision:v0.10.0', 'googlenet', pretrained=True)
model.eval()

*******************************************************************************
Preprocesamiento de la imagen:

preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

Se define una serie de transformaciones para preprocesar la imagen, incluyendo el cambio de tamaño, recorte, conversión a tensor y normalización.
*******************************************************************************
Carga de la imagen y aplicación del preprocesamiento:

input_image = Image.open(image_path_drive)
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0)

Se carga la imagen desde la ruta especificada y se aplica el preprocesamiento.
**************************************************************************************
Transferencia a GPU (si está disponible):
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')

Si la GPU está disponible, se mueve tanto la entrada como el modelo a la GPU.
**********************************************************************************************
Inferencia del modelo:
with torch.no_grad():
output = model(input_batch)
Se realiza la inferencia en el modelo preentrenado para obtener las puntuaciones de salida
**************************************************************************************************
Postprocesamiento y visualización de resultados:
probabilities = torch.nn.functional.softmax(output[0], dim=0)
top5_prob, top5_catid = torch.topk(probabilities, 5)

for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())

Se calculan las probabilidades utilizando softmax y se imprimen las cinco categorías principales junto con sus puntuaciones de confianza.
*********************************************************************************************************

Búsqueda en Google Imagenes:

top_category = categories[top5_catid[0]]
search_query = top_category.replace(" ", "+")
search_link = f"https://www.google.com/search?q={search_query}&tbm=isch"
print(f"Para ver imágenes de '{top_category}', visita: {search_link}")

Se selecciona la categoría principal (la de mayor puntuación) y se construye un enlace para buscar imágenes relacionadas en Google Images.
********************************************************************************************************************

En resumen, este programa demuestra cómo cargar un modelo preentrenado, realizar inferencias en una imagen,
y luego visualizar las categorías principales y realizar una búsqueda en Google Images basada en la categoría principal identificada por el modelo.

********************************************************************************************************************

EXIGENCIAS PARA SU DEBIDA EJECUCIÓN BAJO LINUX.
----------------------------------------------

Preparar la carga de librerías para un sistema Linux.
En concreto: Ubuntu 20.04.6 LTS. Se deberán cargar de
la siguiente forma, y en esta secuencia, en consola Linux:

sudo apt-get update
sudo apt-get install -y python3-pip python3-dev python3-venv
sudo apt-get install -y libopenblas-base libopenmpi-dev

-----------------------------------------------------
python3 -m venv myenv
source myenv/bin/activate

----------------------------------------------------
pip install torch torchvision torchaudio

----------------------------------------------
Comprobamos que todo ha ido bien:
import torch
print(torch.__version__)

----------------------------------------------------
También debemos descargar a nuestro directorio actual de ejecucion:imagenet_classes.txt
con este comando:
wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt

Debemos bajar la imagen de una raza de perro, y proporcionar la ruta para
que el programa haga la predicción. En mi caso sería:
image_path_drive = '/home/margarito/python/perro.jpg'

****************************************************************************
Como comenté en mi caso, el ejercicio fue realizado en una plataforma Linux.
Ubuntu 20.04.6 LTS.
Ejecución bajo consola con este comando:
python3 Aula_18_Ejercicio_torch.py

----------------------------------------------------------------------------------------------------------------------------------------
Imágen de perfil

Red-CNN Detección de bordes


Python

Publicado el 19 de Febrero del 2024 por Hilario (129 códigos)
280 visualizaciones desde el 19 de Febrero del 2024
Figure_1
Figure_2

Los kernels Sobel son filtros utilizados comúnmente en procesamiento de imágenes para realizar operaciones de convolución, especialmente en el contexto de detección de bordes. Estos filtros están diseñados para resaltar cambios rápidos en la intensidad de los píxeles en una imagen, lo que generalmente indica la presencia de bordes.

El operador Sobel consiste en dos kernels, uno para la detección de cambios horizontales y otro para cambios verticales. Estos kernels son matrices pequeñas que se aplican a la imagen mediante la operación de convolución. Los kernels Sobel comúnmente utilizados son los siguientes:

Kernel Sobel para detección de bordes horizontales (kernel_sobel_x):

[ -1, 0, 1]
[ -2, 0, 2]
[ -1, 0, 1]

Kernel Sobel para detección de bordes verticales (kernel_sobel_y):

[ 1, 2, 1]
[ 0, 0, 0]
[-1, -2, -1]

La operación de convolución implica deslizar estos kernels sobre la imagen original, multiplicando los valores de los píxeles en la región correspondiente del kernel y sumándolos para obtener un nuevo valor en la posición central. Este proceso se repite para cada píxel en la imagen, generando así dos nuevas imágenes filtradas: una resaltando cambios horizontales y otra resaltando cambios verticales.

La magnitud de los bordes se calcula combinando las respuestas horizontales y verticales mediante una fórmula de magnitud Euclidiana.

Este resultado proporciona una representación de la intensidad de los bordes en la imagen original, lo cual es útil para tareas como detección de contornos. En el código que compartiste anteriormente, estos kernels Sobel se utilizan para realizar la detección de bordes en la imagen cargada.


Este programa en Python: python3 Aula_28_bordes_CNN.py, realiza la detección de bordes en una imagen utilizando el operador Sobel. Aquí tienes una explicación paso a paso:

Cargar la imagen:
Utiliza la biblioteca OpenCV (cv2) para cargar una imagen desde la ruta "/home/margarito/python/tulipanes.jpeg".
Verifica si la carga de la imagen fue exitosa.

Convertir la imagen a formato RGB:
Utiliza la función cv2.cvtColor para convertir la imagen cargada (en formato BGR) a formato RGB.
Muestra la imagen original utilizando la biblioteca matplotlib.

Definir los kernels Sobel:
Define dos kernels Sobel, uno para la detección de bordes horizontales (kernel_sobel_x) y otro para la detección de bordes verticales (kernel_sobel_y).

Aplicar los filtros Sobel:
Utiliza la función cv2.filter2D para aplicar los filtros Sobel a la imagen original, obteniendo dos imágenes resultantes (imagen_bordes_x e imagen_bordes_y), que representan los bordes horizontales y verticales, respectivamente.

Calcular la magnitud de los bordes:
Calcula la magnitud de los bordes combinando las imágenes resultantes de los filtros Sobel mediante la fórmula de la magnitud Euclidiana.

Verificar si hay datos válidos en la matriz antes de normalizar:
Antes de normalizar la magnitud de los bordes, verifica si hay datos válidos en la matriz utilizando np.any.

Convertir a tipo de datos float32 antes de normalizar:
Convierte la matriz de magnitud de bordes a tipo de datos float32. Esto es necesario para evitar problemas de normalización con tipos de datos no compatibles.

Normalizar la imagen:
Utiliza el método de normalización para escalar los valores de la magnitud de los bordes al rango [0, 1]. Esto es importante para visualizar correctamente la imagen de bordes.

Mostrar la imagen con bordes:
Utiliza plt.imshow para mostrar la imagen resultante de la detección de bordes en escala de grises.
Muestra un título indicando que se ha aplicado el operador Sobel para la detección de bordes.

Manejar casos donde la matriz de magnitud de bordes está vacía:
Si la matriz de magnitud de bordes está vacía (todos los elementos son cero), imprime un mensaje indicando que la matriz está vacía o no contiene datos válidos.

En resumen, este programa carga una imagen, aplica el operador Sobel para detectar bordes y muestra la imagen resultante de la detección de bordes. Además, maneja casos donde la matriz de magnitud de bordes no contiene datos válidos.
Imágen de perfil

Generador de contraseñas.


Python

estrellaestrellaestrellaestrellaestrella(3)
Actualizado el 30 de Enero del 2024 por Antonio (76 códigos) (Publicado el 2 de Agosto del 2021)
9.189 visualizaciones desde el 2 de Agosto del 2021
Programa para generar contraseñas de forma aleatoria, de hasta 50 caracteres. Cuenta con un campo "LENGTH" para especificar la longitud de la contraseña, un campo "MIN LOWERCASE" para especificar el número mínimo de caracteres en minúsculas, un campo "MIN UPPERCASE" para el número mínimo de caracteres en mayúsculas y un campo "MIN NUMBERS" para especificar el número mínimo de caracteres numéricos.
PARA CUALQUIER DUDA U OBSERVACIÓN USEN LA SECCIÓN DE COMENTARIOS.
pg
Imágen de perfil

Predicción más próxima. CNN


Python

Publicado el 21 de Enero del 2024 por Hilario (129 códigos)
209 visualizaciones desde el 21 de Enero del 2024
La última imagen corresponde a la EPOCH número 3.
-----------------------------------------------------------------------
Figure_2
Figure_1
Figure_3

**********************************************************************************************************************


MANUAL PREDICCIÓN PRÓXIMA A DECISIÓN.
------------------------------------

Ejercicio_IA_Aula_08.py
-----------------------

Este código implementa una red convolucional (CNN) utilizando el conjunto de datos CIFAR-10 para clasificación de imágenes. Aquí hay una explicación sencilla de lo que hace el ejercicio:

Carga y Preprocesamiento de Datos:
-----------------------------------------------
Importa las bibliotecas necesarias y carga el conjunto de datos CIFAR-10.
Normaliza las imágenes dividiendo los valores de píxeles por 255.
Convierte las etiquetas de clase a formato categórico.
Creación de Generadores de Datos:

Define generadores de datos para el entrenamiento y la validación, aplicando aumentación de datos en el conjunto de entrenamiento.

Definición del Modelo CNN:
-------------------------
Crea un modelo secuencial de CNN con capas convolucionales, activaciones ReLU, capas de max-pooling, una capa Flatten, capas Dense y una capa de salida con activación softmax.
Utiliza la función de pérdida 'categorical_crossentropy', el optimizador 'rmsprop' y mide la precisión durante el entrenamiento.

Entrenamiento del Modelo:
-----------------------
Entrena el modelo en varios epochs utilizando el generador de entrenamiento y el generador de validación.
Después de cada epoch, muestra algunas imágenes del conjunto de validación junto con las predicciones del modelo.

Mostrar Resultados Finales:
--------------------------
Muestra los resultados finales, incluyendo la precisión alcanzada en la última epoch.
Visualización de Imágenes en Decisiones:

Define una función (show_images_on_decision) para visualizar imágenes del conjunto de validación junto con las predicciones del modelo.

En resumen, este código implementa y entrena una CNN para clasificación de imágenes en el conjunto de datos CIFAR-10, y muestra algunas imágenes junto con las predicciones del modelo después de cada epoch de entrenamiento.

LAS BIBLIOTECAS QUE UTILIZAREMOS SERÁN LOS SIGUIENTES:
------------------------------------------------------

numpy: Módulo de la librería de matemáticas NumPy para trabajar con matrices y vectores
matplotlib: Módulo de la librería de visualización Matplotlib para crear gráficos y visualizaciones
keras.datasets: Módulo de la biblioteca Keras para cargar y trabajar con conjuntos de datos predefinidos
keras.utils: Módulo de la biblioteca Keras para convertir etiquetas de variables categóricas en matrices numéricas
keras.preprocessing.image: Módulo de la biblioteca Keras para preprocesar imágenes
keras.models: Módulo de la biblioteca Keras para crear y administrar modelos de redes neuronales
keras.layers: Módulo de la biblioteca Keras para definir y agregar capas a los modelos de redes neuronales
keras.backend: Módulo de la biblioteca Keras para acceder a las funciones y variables del backend de TensorFlow


****************************************************************************************************************
Establecimiento de parámetros:
-----------------------------
Se establecen algunos parámetros relevantes para el modelo de red neuronal:

modo: Modo de clasificación utilizado, "categorical" para multiclase o "binary" para binaria
dimension: Dimensión de las imágenes de entrenamiento (32x32 en este caso)
Carga del conjunto de datos CIFAR-10

Se carga el conjunto de datos CIFAR-10, que contiene imágenes de 60,000 objetos de 10 clases diferentes. Las imágenes se dividen en conjuntos de entrenamiento y validación.

Preprocesamiento de imágenes:
----------------------------


Las imágenes se convierten en formato float y se escalan entre 0 y 1. Además, se representan en formato categórico para la clasificación multiclase.

Generación de datos con transformación:

Se utilizan dos generadores de datos para preprocesar las imágenes durante el entrenamiento y la validación. Estos generadores aplican transformaciones como escalado, giro y volteo para aumentar la diversidad del dataset y mejorar el rendimiento del modelo.

Creación del modelo de red neuronal:
----------------------------------
Se crea un modelo de red neuronal convolucional secuencial utilizando el módulo Sequential de Keras. El modelo consta de las siguientes capas:

Capas convolucionales:
---------------------
Tres capas convolucionales con filtros de 16, 32 y 64 filtros, respectivamente. Estas capas extraen características espaciales de las imágenes.

Funciones de activación:
-----------------------
Se utiliza la función de activación ReLU después de cada capa convolucional para mejorar la selectividad de las características extraídas.

"Polinización" máxima:
-------------------
Se utiliza la capa de maxpooling después de cada capa convolucional para reducir la dimensionalidad de las representaciones espaciales sin perder información importante.

Flatten:
-------

Se utiliza una capa de aplanamiento para convertir las matrices bidimensionales de características en vectores unidimensionales.

Capas densas:
-----------
Se agregan dos capas densas con 64 y 10 neuronas, respectivamente. Estas capas representan la parte final del modelo, donde se realiza la clasificación.

Función de activación final: La última capa utiliza la función de activación softmax para generar probabilidades de pertenencia a cada una de las 10 clases.

Compilación del modelo.
**********************

Se compila el modelo definiendo las funciones de pérdida y optimizador. La función de pérdida utilizada es la entropía cruzada categórica para la clasificación multiclase, y el optimizador utilizado es el RMSprop, un algoritmo de optimización eficiente para redes neuronales convolucionales.

Entrenamiento del modelo.
***********************
Se entrena el modelo durante 5 épocas, utilizando los conjuntos de entrenamiento y validación. En cada época, el modelo se ajusta a los datos de entrenamiento y se evalúa en los datos de validación para monitorear su progreso.

Función para mostrar imágenes de decisión
****************************************
Se define una función show_images_on_decision que muestra imágenes del conjunto de validación y sus predicciones. Esta función se utiliza después de cada época para visualizar cómo está funcionando el modelo.

Resultados finales
*****************
Al final del entrenamiento, se imprimen los resultados finales, incluyendo la precisión del modelo en el conjunto de validación.

------------------------------------------------------------------------------------------------------------
El ejercicio fue realizado en una plataforma Linux.
Ubuntu 20.04.6 LTS.
Editado en Sublime text.
Ejecución bajo consola de linux:
--------------------------------------------------------------------------------------------
También se puede editar y ejecutar con GOOGLE COLAB.
********************************************************************************************************************

SALIDA DEL EJERCICIO DESPUES DE 5 CICLOS O EPOCH, CON LA PRECISIÓN OBTENIDA.
***************************************************************************

Epoch 1/5
3125/3125 [==============================] - 55s 17ms/step - loss: 1.7981 - accuracy: 0.3388 - val_loss: 1.4368 - val_accuracy: 0.4725
1/1 [==============================] - 0s 122ms/step
Epoch 2/5
3125/3125 [==============================] - 54s 17ms/step - loss: 1.5218 - accuracy: 0.4575 - val_loss: 1.3205 - val_accuracy: 0.5330
1/1 [==============================] - 0s 24ms/step
Epoch 3/5
3125/3125 [==============================] - 54s 17ms/step - loss: 1.4376 - accuracy: 0.5005 - val_loss: 1.2920 - val_accuracy: 0.5522
1/1 [==============================] - 0s 24ms/step
Epoch 4/5
3125/3125 [==============================] - 54s 17ms/step - loss: 1.4429 - accuracy: 0.5088 - val_loss: 1.4771 - val_accuracy: 0.4987
1/1 [==============================] - 0s 24ms/step
Epoch 5/5
3125/3125 [==============================] - 54s 17ms/step - loss: 1.4649 - accuracy: 0.5012 - val_loss: 1.3029 - val_accuracy: 0.5609
1/1 [==============================] - 0s 24ms/step


_____________________________________________________
| Dimension | Capa | Filtro | Precision |
_____________________________________________________
| 32 | 3 | [64] | 50.1240015 |
_____________________________________________________

Imágen de perfil

Crear modelo con datos CIFAR 10.


Python

Publicado el 20 de Enero del 2024 por Hilario (129 códigos)
312 visualizaciones desde el 20 de Enero del 2024
gato
Figure_1

PREGUNTA DEL EJERCICIO.
------------------------------------------
Considerando que tengo que entrenar mi modelo con datos Cifar 10, Guardandolo en esta ruta:'/home/margarito/python/Mi_Modulo_Hilario.h5'.

Necesito crear un test python -basandonos en el modelo:/Mi_Modulo_Hilario.h5, para determinar la clase de esta imagen que esta en esta ruta:/home/margarito/python/gato.jpg.
Para el ejercicio debes de considerar que el archivo de datos Cifar 10, abarca las siguientes clases:


clase 0: airplane
clase 1: automobile
clase 2: bird
clase 3: cat
clase 4: deer
clase 5: dog
clase 6: frog
clase 7: horse
clase 8: ship
clase 9: truck

En el ejercicio se deberá decir de que clase es la imagen del test.
También se deberá de visualizar la imagen_array), en que te basas para hacer dicha predicción.
***************************************************************************************************************
Bien, podríamos plantear una estructura básica del proyecto como sigue:

Como podría ser una estructura del Proyecto:

Proyecto_Mi_CNN/

├── cifar-10/
│ ├── data_batch_2
│ └── ...

├── src/
│ ├── __init__.py
│ ├── train_model.py
│ └── test_model.py

└── Mi_Modulo_Hilario.h5

--------------------------------------------------------------------------

Para descargar los datos de imagenes Cifar 10, podeis utilizar este enlace:
https://www.cs.toronto.edu/~kriz/cifar.html

Se abrirá un pequeño manual explicativo, y desde el mismo se verán todas las opciones de descarga,
así como el tipo de datos para generar modelos que abarca Cifar 10.
*******************************************************************************************************************
Este ejercicio ha sido realizado bajo platadorma Linux.
Ubuntu 20.04.6 LTS.
Editado con sublime Text.
-------------------------------------------------------------------------------------------------------------
Para la ejecución correcta del programa en Python debereis tener cargadas para importar,
estas librerías:

import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import load_model
import numpy as np
import matplotlib.pyplot as plt
Imágen de perfil

Crear Módulo Transferencia Aprendizaje.


Python

Publicado el 16 de Enero del 2024 por Hilario (129 códigos)
241 visualizaciones desde el 16 de Enero del 2024
python3 Repaso_Aula_28.py
*************************


Ejercicio sencillo para Aula-28.
*******************************
Queremos generar un módulo para posteriores entrenamientos utilizando transferencia de aprendizaje.

A nuestro módulo lo llamaremos:MODULO-HIM.h5
Lo guardaré en esta ruta de mi ordenador: save_path = "/home/margarito/python/MODULO-HIM.h5"

Suponemos que en nuestro ordenador tenemos las imagenes de entrenamiento, que deberán guardar básicamente según este este esquema. En el caso de mi ordenador sería el siguiente:

/home/margarito/python/HIM/
|-- train/
| |-- dog/
| | |-- imagen1.jpg
| | |-- imagen2.jpg
| | |-- ...
| |
| |-- flores/
| | |-- imagen1.jpg
| | |-- imagen2.jpg
| | |-- ...
| |
| |-- ...
|
|-- test/
| |-- dog/
| | |-- imagen1.jpg
| | |-- imagen2.jpg
| | |-- ...
| |
| |-- flores/
| | |-- imagen1.jpg
| | |-- imagen2.jpg
| | |-- ...
| |
| |-- ...


Epoch.
*******
Epoch 1/10
2/2 [==============================] - 3s 615ms/step - loss: 0.6765 - accuracy: 0.5472
Epoch 2/10
2/2 [==============================] - 2s 875ms/step - loss: 0.6293 - accuracy: 0.5660
Epoch 3/10
2/2 [==============================] - 2s 566ms/step - loss: 0.5859 - accuracy: 0.6415
Epoch 4/10
2/2 [==============================] - 2s 880ms/step - loss: 0.5429 - accuracy: 0.8491
Epoch 5/10
2/2 [==============================] - 2s 571ms/step - loss: 0.5003 - accuracy: 0.8679
Epoch 6/10
2/2 [==============================] - 2s 564ms/step - loss: 0.4556 - accuracy: 0.8868
Epoch 7/10
2/2 [==============================] - 2s 889ms/step - loss: 0.4191 - accuracy: 0.8868
Epoch 8/10
2/2 [==============================] - 2s 864ms/step - loss: 0.3714 - accuracy: 0.8491
Epoch 9/10
2/2 [==============================] - 2s 884ms/step - loss: 0.3436 - accuracy: 0.9057
Epoch 10/10
2/2 [==============================] - 2s 869ms/step - loss: 0.3403 - accuracy: 0.9245



*************************************************************************************************************
El ejercicio es realizado en plataforma Linux.
Concretamente en:Ubuntu 20.04.6 LTS.
Fue editado con:Sublime text.
Ejecución bajo consola Linux:python3 Repaso_Aula_28.py

***************************************************************************************************************
Imágen de perfil

Google Colab y Drive.


Python

Publicado el 16 de Enero del 2024 por Hilario (129 códigos)
239 visualizaciones desde el 16 de Enero del 2024
Utilizar Google Colab junto con Google Drive es una excelente manera de ejecutar y colaborar en proyectos de aprendizaje profundo sin preocuparte por la capacidad de procesamiento y almacenamiento.
Aquí explicamos paso a paso para utilizar Google Colab y Google Drive para generar un modelo de red neuronal convolucional (CNN):
**********************************************************************************************************************************
Paso 1: Preparar tus datos en Google Drive
Crea una carpeta en Google Drive:
Abre Google Drive y crea una carpeta para tu proyecto. Puedes organizar tus datos, cuadernos de Jupyter y modelos en esta carpeta.

Sube tus datos:
Sube tus datos al directorio creado. Pueden ser conjuntos de entrenamiento, validación y prueba en carpetas separadas. Asegúrate de que tus datos estén organizados de manera adecuada.
****************************************************************************************************************************************
Paso 2: Conectar Google Colab a Google Drive
Abre un nuevo cuaderno de Colab:
Abre Google Colab (https://colab.research.google.com/) y crea un nuevo cuaderno de Jupyter.

Monta Google Drive:
Ejecuta el siguiente código en una celda para montar tu Google Drive en Colab. Esto te pedirá autorización y generará un código que debes ingresar.

from google.colab import drive
drive.mount('/content/drive')


Sigue las instrucciones para autorizar y copia el código de autorización en el cuadro de texto de la celda.

*************************************************************************************************************************************
Accede a tus datos:
Después de montar Google Drive, puedes acceder a tu carpeta del proyecto utilizando la ruta /content/drive/MyDrive/:

project_folder = '/content/drive/MyDrive/TuCarpetaDeProyecto'

*******************************************************************************************************

Paso 3: Cargar y Preprocesar Datos
Carga y preprocesa tus datos:
Utiliza las bibliotecas de Python para cargar y preprocesar tus datos. Por ejemplo, si estás trabajando con imágenes en el conjunto de datos CIFAR-10:

import pickle
import numpy as np
from tensorflow.keras.utils import to_categorical

# Cargar datos desde Google Drive
with open(project_folder + '/data/cifar10_data.pkl', 'rb') as file:
data = pickle.load(file)

# Preprocesar datos
x_train, y_train, x_test, y_test = data['train_images'], data['train_labels'], data['test_images'], data['test_labels']
x_train = x_train / 255.0
x_test = x_test / 255.0
y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)

*************************************************************************************************************

Paso 4: Construir y Entrenar el Modelo CNN
Definir el modelo CNN:
Construye tu modelo de CNN utilizando TensorFlow y Keras. Aquí hay un ejemplo simple:

from tensorflow.keras import layers, models

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

****************************************************************************************************************

Compilar y entrenar el modelo:
Compila y entrena tu modelo utilizando los datos cargados:

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))

********************************************************************************************************************

Paso 5: Guardar el Modelo en Google Drive
Guardar el modelo:
Después de entrenar el modelo, guárdalo en tu carpeta de Google Drive:

model.save(project_folder + '/modelo_cnn.h5')

***************************************************************************************************************

Paso 6: Descargar el Modelo (opcional)
Descargar el modelo:
Si lo prefieres, puedes descargar el modelo entrenado desde Google Drive:

from google.colab import files
files.download(project_folder + '/modelo_cnn.h5')

*****************************************************************************************************************

Estos pasos deberían ayudarte a ejecutar un proyecto de CNN en Google Colab utilizando Google Drive para almacenar tus datos y modelos. Asegúrate de adaptar el código según tus necesidades específicas y estructura de datos.


------------------------------------------------------------------------------------------------------------------------------------
**************************************************************************************************************************************************************************************************************************************
SALIDA CONSOLA PROCESO DE EJECUCIÓN DEL EJERCICIO EN GOOGLE COLAB.
*****************************************************************************************************

Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
170498071/170498071 [==============================] - 12s 0us/step
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 30, 30, 32) 896

max_pooling2d (MaxPooling2 (None, 15, 15, 32) 0
D)

conv2d_1 (Conv2D) (None, 13, 13, 64) 18496

max_pooling2d_1 (MaxPoolin (None, 6, 6, 64) 0
g2D)

conv2d_2 (Conv2D) (None, 4, 4, 64) 36928

flatten (Flatten) (None, 1024) 0

dense (Dense) (None, 64) 65600

dense_1 (Dense) (None, 10) 650

=================================================================
Total params: 122570 (478.79 KB)
Trainable params: 122570 (478.79 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________
Epoch 1/10
1563/1563 [==============================] - 187s 119ms/step - loss: 1.7111 - accuracy: 0.3684 - val_loss: 1.3924 - val_accuracy: 0.4950
Epoch 2/10
1563/1563 [==============================] - 186s 119ms/step - loss: 1.4381 - accuracy: 0.4798 - val_loss: 1.2347 - val_accuracy: 0.5591
Epoch 3/10
1563/1563 [==============================] - 188s 120ms/step - loss: 1.3287 - accuracy: 0.5234 - val_loss: 1.1421 - val_accuracy: 0.5922
Epoch 4/10
1563/1563 [==============================] - 185s 118ms/step - loss: 1.2549 - accuracy: 0.5513 - val_loss: 1.1387 - val_accuracy: 0.5944
Epoch 5/10
1563/1563 [==============================] - 185s 118ms/step - loss: 1.1964 - accuracy: 0.5732 - val_loss: 1.0895 - val_accuracy: 0.6132
Epoch 6/10
1563/1563 [==============================] - 181s 116ms/step - loss: 1.1545 - accuracy: 0.5881 - val_loss: 1.1042 - val_accuracy: 0.6162
Epoch 7/10
1563/1563 [==============================] - 181s 116ms/step - loss: 1.1209 - accuracy: 0.6025 - val_loss: 1.0378 - val_accuracy: 0.6406
Epoch 8/10
1563/1563 [==============================] - 179s 115ms/step - loss: 1.0897 - accuracy: 0.6128 - val_loss: 0.9644 - val_accuracy: 0.6558
Epoch 9/10
1563/1563 [==============================] - 180s 115ms/step - loss: 1.0678 - accuracy: 0.6223 - val_loss: 0.9507 - val_accuracy: 0.6730
Epoch 10/10
1563/1563 [==============================] - 180s 115ms/step - loss: 1.0431 - accuracy: 0.6308 - val_loss: 0.8898 - val_accuracy: 0.6875
/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py:3103: UserWarning: You are saving your model as an HDF5 file via `model.save()`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')`.
saving_api.save_model(
Imágen de perfil

Crear Modelo red neuronal CNN.


Python

Publicado el 14 de Enero del 2024 por Hilario (129 códigos)
327 visualizaciones desde el 14 de Enero del 2024
Con este ejemplo sencillo, pretendo explicar como realizar un ejercicio llamado: Crear_Modelo_CN_Aula-28.py, para entrenar una red neuronal convolucional (CNN), siguiendo varios pasos. Aquí te proporcionaré un resumen general de los pasos que puedes seguir utilizando bibliotecas como TensorFlow y Keras en Python. Ten en cuenta que esto es solo una guía básica, y dependiendo de tus necesidades específicas, es posible que debas ajustar algunos parámetros y configuraciones, incluso incrementar la dificultad del ejercicio.


Paso 1: Preparar tus datos.
--------------------------
Organizar tus datos:

Divide tus datos en conjuntos de entrenamiento y prueba. El conjunto de entrenamiento se utiliza para entrenar el modelo, mientras que el conjunto de prueba se utiliza para evaluar su rendimiento.
Asegúrate de tener etiquetas asociadas a cada imagen para supervisar el entrenamiento.

Preprocesamiento de imágenes:
----------------------------
Normaliza las imágenes (escala los valores de píxeles entre 0 y 1).
Redimensiona las imágenes según los requisitos de entrada de tu red neuronal.

Paso 2: Crear la arquitectura de la CNN.
---------------------------------------
Importar bibliotecas:

Importa TensorFlow y Keras.
Definir el modelo:

Crea un modelo secuencial (Sequential) o funcional de Keras.
-----------------------------------------------------------
Agrega capas convolucionales, capas de agrupación (pooling), y capas totalmente conectadas según tu arquitectura.

Paso 3: Compilar el modelo.
--------------------------
Compilar el modelo:
Especifica la función de pérdida, el optimizador y las métricas que se utilizarán para evaluar el rendimiento del modelo.
Utiliza el método compile de Keras.

Paso 4: Entrenar el modelo.
--------------------------
Entrenar el modelo:
Utiliza el método fit de Keras.
Proporciona el conjunto de entrenamiento y valida con el conjunto de prueba.
Ajusta el número de épocas y el tamaño del lote según sea necesario.

Paso 5: Evaluar el modelo.
-------------------------
Evaluar el modelo:
Utiliza el conjunto de prueba para evaluar el rendimiento del modelo.
Puedes usar el método evaluate de Keras.

Paso 6: Guardar el modelo entrenado.
----------------------------------
Guardar el modelo:
Utiliza la función save de Keras para guardar el modelo entrenado en un archivo.

PRESENTACION DE LAS IMAGENES DE ENTRENAMIENTO.
********************************************

Básicamente estamos hablando de dos formas:

[indent]CASO_1
*****

Imaginate que tengo estas imagenes:
imagen_1.jpg
imagen_2.jpg
imagen_3.jpg
imagen_4.jpg
imagen_5.jpg
imagen_6.jpg
imagen_7.jpg
imagen_8.jpg
.....
imagen_121.jpg
imagen_122.jpg
imagen_123.jpg
imagen_124.jpg

[/indent]
*************************************************************************************
Sí, en tu caso, no hay clases específicas y solo tienes un conjunto de imágenes numeradas, simplemente colocarlas en orden jerárquico dentro del directorio de entrenamiento (train) es suficiente. La estructura que te proporciono como ejemplo refleja esa simplicidad.
Esta podría ser una ruta normal de archivos, al que llamamos en el directorio principal: ProyectoCNN

[indent]ProyectoCNN/
└── dataset/
└── train/
├── imagen_1.jpg
├── imagen_2.jpg
├── imagen_3.jpg
├── imagen_4.jpg
├── imagen_5.jpg
├── imagen_6.jpg
├── imagen_7.jpg
├── imagen_8.jpg
├── ...
└── imagen_124.jpg
[/indent]
----------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------

CASO_2.
*********

En nuestro ejemplo utilizaremos, este formato de almacenamiento (CASO_2.), para entrenar el modelo.

Bien, imaginate ahora que tenemos estos directorios de clase:

(En mi caso, con el fin de coger el concepto de su funcionamiento solo he aportado 3 imagenes para cada tipo. Por lo
que los resultados de la predicción son bastante pobre, para aumentar la eficacia debería hacerse con miles de imagenes. Ten en cuenta que habitualmente para train, los modelos ya entrenados que descargamos pueden rondar las 60.000 imagenes.)

[[indent]b]camiones:
--------
imagen_1.jpg
imagen_2.jpg
imagen_3.jpg
imagen_4.jpg
imagen_5.jpg
imagen_6.jpg
imagen_7.jpg
imagen_8.jpg
.....
imagen_121.jpg
imagen_122.jpg
imagen_123.jpg
imagen_124.jpg

turismos:
--------
imagen_1.jpg
imagen_2.jpg
imagen_3.jpg
imagen_4.jpg
imagen_5.jpg
imagen_6.jpg
imagen_7.jpg
imagen_8.jpg
.....
imagen_121.jpg
imagen_122.jpg
imagen_123.jpg
imagen_124.jpg

autocares:
----------
imagen_1.jpg
imagen_2.jpg
imagen_3.jpg
imagen_4.jpg
imagen_5.jpg
imagen_6.jpg
imagen_7.jpg
imagen_8.jpg
.....
imagen_121.jpg
imagen_122.jpg
imagen_123.jpg
imagen_124.jpg

motocicletas:
------------
imagen_1.jpg
imagen_2.jpg
imagen_3.jpg
imagen_4.jpg
imagen_5.jpg
imagen_6.jpg
imagen_7.jpg
imagen_8.jpg
.....
imagen_121.jpg
imagen_122.jpg
imagen_123.jpg
imagen_124.jpg[/b]
[/indent]
Como organizarias las imagenes para entrenar un modelo CNN.
----------------------------------------------------------
En principio, nosotros las organizariamos como sigue. Sin duda
puede haber más opciones que puedes experimentar,siempre que des la ruta adecuada
de acceso a tu modelo:ProyectoCNN.
ProyectoCNN/
└── dataset/
├── train/
│ ├── camiones/
│ │ ├── imagen_1.jpg
│ │ ├── imagen_2.jpg
│ │ ├── ...
│ │ └── imagen_124.jpg
│ ├── turismos/
│ │ ├── imagen_1.jpg
│ │ ├── imagen_2.jpg
│ │ ├── ...
│ │ └── imagen_124.jpg
│ ├── autocares/
│ │ ├── imagen_1.jpg
│ │ ├── imagen_2.jpg
│ │ ├── ...
│ │ └── imagen_124.jpg
│ └── motocicletas/
│ ├── imagen_1.jpg
│ ├── imagen_2.jpg
│ ├── ...
│ └── imagen_124.jpg
├── validation/
│ (mismo formato que 'train')
└── test/
(mismo formato que 'train')


En este ejemplo, he organizado las imágenes en tres conjuntos: entrenamiento (train), validación (validation), y prueba (test). Cada conjunto tiene subdirectorios para cada clase de vehículo (camiones, turismos, autocares, motocicletas). Esto es una práctica común al trabajar con modelos de aprendizaje profundo.

Espero que esto te ayude a estructurar tus datos para el entrenamiento de tu modelo CNN. Asegúrate de ajustar la división entre conjuntos de entrenamiento, validación y prueba según tus necesidades específicas.

**************************************************************************************************************
Los directorios "validation" y "test" son comúnmente utilizados en el entrenamiento de modelos de aprendizaje profundo, como las redes neuronales convolucionales (CNN), para evaluar el rendimiento del modelo en datos que no ha visto durante el entrenamiento. Aquí hay una breve descripción de cada uno:

Conjunto de Validación:
----------------------
Propósito: Se utiliza durante el entrenamiento del modelo para ajustar los hiperparámetros y evitar el sobreajuste (overfitting).

Composición:
---------------
Contiene datos adicionales que no se utilizan para entrenar directamente el modelo, pero se emplean para evaluar su rendimiento durante cada época (epoch) del entrenamiento.

Cómo se usa:
-----------
Después de cada época (epoch), de entrenamiento, el modelo se evalúa en el conjunto de validación. Esto permite ajustar los hiperparámetros del modelo para mejorar su rendimiento en datos que no forman parte del conjunto de entrenamiento.

Conjunto de Prueba (Test):
-------------------------

Propósito:
----------------
Se utiliza al final del entrenamiento para evaluar el rendimiento final del modelo en datos completamente nuevos que no se han visto en absoluto durante el proceso de entrenamiento.

Composición:
-----------
Contiene datos independientes que el modelo nunca ha visto ni durante el entrenamiento ni durante la validación.

Cómo se usa:
-----------
Una vez que el modelo ha sido entrenado y ajustado utilizando el conjunto de entrenamiento y de validación, se evalúa de manera final en el conjunto de prueba para obtener una estimación imparcial de su rendimiento en datos no vistos.
La separación entre conjuntos de entrenamiento, validación y prueba ayuda a garantizar que el modelo sea capaz de generalizar bien a datos no vistos y no se sobreajuste a los datos de entrenamiento específicos.

En resumen, el conjunto de validación es utilizado para ajustar los hiperparámetros y evitar el sobreajuste durante el entrenamiento, mientras que el conjunto de prueba proporciona una evaluación final del rendimiento del modelo en datos completamente nuevos y no vistos.
********************************************************************************************************************

Debes asegurarte, para no generar errores, que las rutas, en tu caso, sean exactas.
El ejercicio para generar el módelo tendría este código, que también te pongo en el editor de códigos:
----------------------------------------------------------------------------------
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Rutas de los datos de entrenamiento, validación y prueba
train_data_dir = 'ProyectoCNN/dataset/train'
validation_data_dir = 'ProyectoCNN/dataset/validation'
test_data_dir = 'ProyectoCNN/dataset/test'

# Parámetros
batch_size = 32
img_height = 64
img_width = 64

# Crear generadores de datos para entrenamiento, validación y prueba
train_datagen = ImageDataGenerator(rescale=1./255)
validation_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical') # 'categorical' ya que hay más de dos clases

validation_generator = validation_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical')

test_generator = test_datagen.flow_from_directory(
test_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical')

# Construir el modelo CNN
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(4, activation='softmax')) # 'softmax' ya que hay más de dos clases

# Compilar el modelo
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])

# Entrenar el modelo
model.fit(train_generator, epochs=10, validation_data=validation_generator)

# Evaluar el modelo en el conjunto de prueba
test_loss, test_acc = model.evaluate(test_generator)
print(f'Precisión en el conjunto de prueba: {test_acc}')

# Guardar el modelo
model.save('modelo_cnn_proyecto.h5')

**********************************************************************************************************
**************************************************************************************************************
Bien. En mi caso. Una vez creado el modelo con esta ruta: /home/margarito/python/modelo_cnn_proyecto.h5.
Necesito entrenar una red neuronal CNN, con el modelo: modelo_cnn_proyecto.h5 Que dada la ruta de esta
imagen de un turismo en esta ruta:/home/margarito/python/coche.jpeg . Me diga si es un camion,
una motocicleta, un coche, o un autocar.ñ

-----------------------------------------------------------------------------------------------------------
Después de haber entrenado tu modelo, puedes usarlo para hacer predicciones sobre nuevas imágenes.
Aquí tienes un ejemplo de cómo cargar el modelo y realizar una predicción sobre la imagen de un turismo:

import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg16 import preprocess_input, decode_predictions
import numpy as np

# Cargar el modelo previamente entrenado
modelo = tf.keras.models.load_model('/home/margarito/python/modelo_cnn_proyecto.h5')

# Cargar la imagen de un coche
img_path = '/home/margarito/python/coche.jpeg'
img = image.load_img(img_path, target_size=(64, 64))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array = preprocess_input(img_array)

# Realizar la predicción
predictions = modelo.predict(img_array)

# Obtener las clases predichas
class_indices = {0: 'camiones', 1: 'turismos', 2: 'autocares', 3: 'motocicletas'}
predicted_class = class_indices[np.argmax(predictions)]

# Imprimir el resultado
print(f'Predicción: {predicted_class}')


------------------------------------------------------------------------------------------
Este script carga la imagen del coche, la preprocesa de manera adecuada para el modelo, realiza la predicción y luego imprime la clase predicha. Asegúrate de que la imagen esté en el formato adecuado y ajusta las rutas según sea necesario. Recuerda que el modelo fue entrenado con clases específicas ('camiones', 'turismos', 'autocares', 'motocicletas'), así que las clases predichas deben coincidir con estas categorías.

************************************************************************************
[b]El ejercicio fue realizado bajo plataforma Linux.
Concretamente:Ubuntu 20.04.6 LTS
Editado con:Sublime Text.
-------------------------
Se debe de tener en cuenta que en tu ordenador deberan estar cargadas las librerias necesarias.
En nuestro caso:
---------------
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.preprocessing.image import ImageDataGenerator
-------------------------------------------
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg16 import preprocess_input, decode_predictions
import numpy as np
************************************************************************************
Ejecucion de los programas:

#Crear_Modelo_CN_Aula-28.py
#Ejecución:python3 Crear_Modelo_CN_Aula-28.py
--------------------------------------------------
#Util_Modelo_Creado_Aula-28.py
#Ejecutar: python3 Util_Modelo_Creado_Aula-28.py
*******************************************************************************************************