Mostrar los tags: LE

Mostrando del 1 al 10 de 471 coincidencias
<<>>
Se ha buscado por el tag: LE
Imágen de perfil
Actualizado

Suavizado de imagen en archivos de vídeo por 'Filtrado bilateral', (aplicación en línea de comandos)


Python

Actualizado el 17 de Abril del 2024 por Antonio (75 códigos) (Publicado el 20 de Marzo del 2023)
6.037 visualizaciones desde el 20 de Marzo del 2023
Programa para realizar filtrado de imagen en archivos de vídeo (preferiblemente de corta duración) utilizando el algoritmo de 'filtrado bilateral' pudiendo especificar los valores sigma de espacio y color y el diámetro del vecindario para cada pixel. Los vídeos filtrados se generan, por defecto, conservando su sonido, aunque se pueden generar sin este introduciendo el argumento '-ae'/'--exclude_audio'.

ARGUMENTOS:
-src/--source: Nombre del vídeo original (OBLIGATORIO)
-dest/--destination: Nombre del video a generar ('NewFilteredVid.mp4' por defecto)
-sgc/--sigma_color: Valor sigma para espacio de color (75 por defecto)
-sgs/--sigma_space: Valor sigma espacial (75 por defecto)
-pd/--pixel_diameter: Diámetro de la vecindad de píxeles (9 por defecto)
-ae/--exclude_audio: Excluir audio y generar video sin sonido (OPCIONAL)

PARA CUALQUIER DUDA U OBSERVACIÓN UTILIZEN LA SECCIÓN DE COMENTARIOS
bvf
bvf2
bvf3
bvf4
Imágen de perfil

Generador de gifs a partir de video, en línea de comandos.


Python

estrellaestrellaestrellaestrellaestrella(4)
Actualizado el 3 de Abril del 2024 por Antonio (75 códigos) (Publicado el 9 de Diciembre del 2022)
8.154 visualizaciones desde el 9 de Diciembre del 2022
Programa para generar gifs animados a partir de vídeos, que se ejecuta en la línea de comandos.
ARGUMENTOS:
-src/--source: Nombre del vídeo original (obligatorio).
-dest/--destination: Nombre del archivo a generar (opcional).
-sz/--size: Tamaño en porcentaje del gif respecto al vídeo original (opcional).
-shw/--show: Muestra resultado en ventana emergente al finalizar el proceso de generado (opcional).
-st/--start: Segundo inicial para gif (opcional).
-e/--end: Segundo final (opcional).
-spd/--speed: Velocidad relativa de la animación (opcional)

PARA CUALQUIER DUDA U OBSERVACIÓN, USEN LA SECCIÓN DE COMENTARIOS.

mk
Imágen de perfil

Visor de gráficos financieros.


Python

estrellaestrellaestrellaestrellaestrella(2)
Actualizado el 1 de Abril del 2024 por Antonio (75 códigos) (Publicado el 7 de Julio del 2021)
9.142 visualizaciones desde el 7 de Julio del 2021
El programa muestra información relativa al precio máximo, mínimo, de apertura y cierre de un activo financiero (estos se irán almacenando en el archivo "symbols" que se generará al ejecutar el programa por primera vez) y para un periodo de tiempo. También muestra los gráficos relativos a las medias móviles exponenciales de 50 y 200 sesiones.
PARA CUALQUIER DUDA U OBSERVACIÓN USEN LA SECCIÓN DE COMENTARIOS.
gf
Imágen de perfil

Colector de links


Python

Actualizado el 2 de Marzo del 2024 por Antonio (75 códigos) (Publicado el 6 de Marzo del 2022)
3.419 visualizaciones desde el 6 de Marzo del 2022
Aplicación para guardar accesos directos a internet (que se guardan en un archivo 'json' que se genera al ejecutar el programa por primera vez), mediante la introducción de la URL en la entrada superior (o su copia mediante el botón 'IMPORT NEW LINK'). El nuevo acceso se guarda mediante el botón "SAVE LINK AS:" que abrirá una ventana pidiendo el nombre del nuevo acceso. Una vez guardado el acceso, se podrá acceder a la correspondiente página seleccionando, en la lista, el elemento guardado y clicando en el botón 'ACCESS' (admite selección normal y múltiple). También permite la eliminación la totalidad de los link o solo los seleccionados. También permite la búsqueda por nombre entre los accesos guardados. El botón "SAVE LIST" generará un archivo de texto con los nombres de enlace y sus correspondientes URLs asociadas, que estén almacenados en el archivo JSON.
PARA CUALQUIER DUDA U OBSERVACIÓN, USEN LA SECCIÓN DE COMENTARIOS.
LNKC
Imágen de perfil

Google Colab y Drive.


Python

Publicado el 16 de Enero del 2024 por Hilario (121 códigos)
152 visualizaciones desde el 16 de Enero del 2024
Utilizar Google Colab junto con Google Drive es una excelente manera de ejecutar y colaborar en proyectos de aprendizaje profundo sin preocuparte por la capacidad de procesamiento y almacenamiento.
Aquí explicamos paso a paso para utilizar Google Colab y Google Drive para generar un modelo de red neuronal convolucional (CNN):
**********************************************************************************************************************************
Paso 1: Preparar tus datos en Google Drive
Crea una carpeta en Google Drive:
Abre Google Drive y crea una carpeta para tu proyecto. Puedes organizar tus datos, cuadernos de Jupyter y modelos en esta carpeta.

Sube tus datos:
Sube tus datos al directorio creado. Pueden ser conjuntos de entrenamiento, validación y prueba en carpetas separadas. Asegúrate de que tus datos estén organizados de manera adecuada.
****************************************************************************************************************************************
Paso 2: Conectar Google Colab a Google Drive
Abre un nuevo cuaderno de Colab:
Abre Google Colab (https://colab.research.google.com/) y crea un nuevo cuaderno de Jupyter.

Monta Google Drive:
Ejecuta el siguiente código en una celda para montar tu Google Drive en Colab. Esto te pedirá autorización y generará un código que debes ingresar.

from google.colab import drive
drive.mount('/content/drive')


Sigue las instrucciones para autorizar y copia el código de autorización en el cuadro de texto de la celda.

*************************************************************************************************************************************
Accede a tus datos:
Después de montar Google Drive, puedes acceder a tu carpeta del proyecto utilizando la ruta /content/drive/MyDrive/:

project_folder = '/content/drive/MyDrive/TuCarpetaDeProyecto'

*******************************************************************************************************

Paso 3: Cargar y Preprocesar Datos
Carga y preprocesa tus datos:
Utiliza las bibliotecas de Python para cargar y preprocesar tus datos. Por ejemplo, si estás trabajando con imágenes en el conjunto de datos CIFAR-10:

import pickle
import numpy as np
from tensorflow.keras.utils import to_categorical

# Cargar datos desde Google Drive
with open(project_folder + '/data/cifar10_data.pkl', 'rb') as file:
data = pickle.load(file)

# Preprocesar datos
x_train, y_train, x_test, y_test = data['train_images'], data['train_labels'], data['test_images'], data['test_labels']
x_train = x_train / 255.0
x_test = x_test / 255.0
y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)

*************************************************************************************************************

Paso 4: Construir y Entrenar el Modelo CNN
Definir el modelo CNN:
Construye tu modelo de CNN utilizando TensorFlow y Keras. Aquí hay un ejemplo simple:

from tensorflow.keras import layers, models

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

****************************************************************************************************************

Compilar y entrenar el modelo:
Compila y entrena tu modelo utilizando los datos cargados:

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))

********************************************************************************************************************

Paso 5: Guardar el Modelo en Google Drive
Guardar el modelo:
Después de entrenar el modelo, guárdalo en tu carpeta de Google Drive:

model.save(project_folder + '/modelo_cnn.h5')

***************************************************************************************************************

Paso 6: Descargar el Modelo (opcional)
Descargar el modelo:
Si lo prefieres, puedes descargar el modelo entrenado desde Google Drive:

from google.colab import files
files.download(project_folder + '/modelo_cnn.h5')

*****************************************************************************************************************

Estos pasos deberían ayudarte a ejecutar un proyecto de CNN en Google Colab utilizando Google Drive para almacenar tus datos y modelos. Asegúrate de adaptar el código según tus necesidades específicas y estructura de datos.


------------------------------------------------------------------------------------------------------------------------------------
**************************************************************************************************************************************************************************************************************************************
SALIDA CONSOLA PROCESO DE EJECUCIÓN DEL EJERCICIO EN GOOGLE COLAB.
*****************************************************************************************************

Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
170498071/170498071 [==============================] - 12s 0us/step
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 30, 30, 32) 896

max_pooling2d (MaxPooling2 (None, 15, 15, 32) 0
D)

conv2d_1 (Conv2D) (None, 13, 13, 64) 18496

max_pooling2d_1 (MaxPoolin (None, 6, 6, 64) 0
g2D)

conv2d_2 (Conv2D) (None, 4, 4, 64) 36928

flatten (Flatten) (None, 1024) 0

dense (Dense) (None, 64) 65600

dense_1 (Dense) (None, 10) 650

=================================================================
Total params: 122570 (478.79 KB)
Trainable params: 122570 (478.79 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________
Epoch 1/10
1563/1563 [==============================] - 187s 119ms/step - loss: 1.7111 - accuracy: 0.3684 - val_loss: 1.3924 - val_accuracy: 0.4950
Epoch 2/10
1563/1563 [==============================] - 186s 119ms/step - loss: 1.4381 - accuracy: 0.4798 - val_loss: 1.2347 - val_accuracy: 0.5591
Epoch 3/10
1563/1563 [==============================] - 188s 120ms/step - loss: 1.3287 - accuracy: 0.5234 - val_loss: 1.1421 - val_accuracy: 0.5922
Epoch 4/10
1563/1563 [==============================] - 185s 118ms/step - loss: 1.2549 - accuracy: 0.5513 - val_loss: 1.1387 - val_accuracy: 0.5944
Epoch 5/10
1563/1563 [==============================] - 185s 118ms/step - loss: 1.1964 - accuracy: 0.5732 - val_loss: 1.0895 - val_accuracy: 0.6132
Epoch 6/10
1563/1563 [==============================] - 181s 116ms/step - loss: 1.1545 - accuracy: 0.5881 - val_loss: 1.1042 - val_accuracy: 0.6162
Epoch 7/10
1563/1563 [==============================] - 181s 116ms/step - loss: 1.1209 - accuracy: 0.6025 - val_loss: 1.0378 - val_accuracy: 0.6406
Epoch 8/10
1563/1563 [==============================] - 179s 115ms/step - loss: 1.0897 - accuracy: 0.6128 - val_loss: 0.9644 - val_accuracy: 0.6558
Epoch 9/10
1563/1563 [==============================] - 180s 115ms/step - loss: 1.0678 - accuracy: 0.6223 - val_loss: 0.9507 - val_accuracy: 0.6730
Epoch 10/10
1563/1563 [==============================] - 180s 115ms/step - loss: 1.0431 - accuracy: 0.6308 - val_loss: 0.8898 - val_accuracy: 0.6875
/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py:3103: UserWarning: You are saving your model as an HDF5 file via `model.save()`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')`.
saving_api.save_model(
Imágen de perfil

Transfer Learning.


Python

Publicado el 28 de Diciembre del 2023 por Hilario (121 códigos)
285 visualizaciones desde el 28 de Diciembre del 2023
seis
numeropredicho
**********************************************************************************************************

Propongo este sencillo ejercicio llamado:AULA-288_Transf_Apren_CNN.py, si utilizamos nuestro propio editor, Sublime text, y ejecutamos directamente en nuestra consola linux. O también llamado:AULA-288_Transf_Apren_CNN.ipynb, si utlizamos para editar y ejecutar a Google Colab.

En ambos casos, utilizamos indirectamente el método denominado "Transferencia de aprendizaje", con el fin de apreciar cual es el proceso de este sistema de red Convolucional(CNN).

Se trata, utilizando Machine Learning de la mano de TensorFlow y Keras, dos librerías Open Source que nos permiten adentrarnos en el Deep Learning de forma sencilla. De entre las muchas bibliotecas disponibles una de las más importantes es indiscutiblemente es TensorFlow, que se ha impuesto como la librería más popular en Deep Learning. Actualmente, sería difícil imaginar abordar un proyecto de aprendizaje sin ella.

Básicamente, para entenderlo, es una biblioteca de código abierto para realizar operaciones matemáticas de manera eficiente, especialmente diseñada para trabajar con redes neuronales y aprendizaje profundo (deep learning).


Keras, por otro lado, es una interfaz de alto nivel para construir y entrenar modelos de aprendizaje profundo. Facilita la construcción y experimentación con redes neuronales de una manera más simple y amigable.

TensorFlow.keras:
TensorFlow.keras es una implementación de la interfaz de Keras que está integrada directamente en TensorFlow. Esto significa que puedes usar las funciones y herramientas de TensorFlow mientras trabajas con la sencillez y flexibilidad de Keras.

En resumen, TensorFlow.keras es una combinación que aprovecha la potencia de TensorFlow para realizar cálculos eficientes en el fondo, mientras que proporciona una interfaz amigable y fácil de usar para diseñar y entrenar modelos de aprendizaje profundo mediante la simplicidad de Keras. Esto facilita el desarrollo de aplicaciones de inteligencia artificial y aprendizaje profundo de una manera más accesible para los desarrolladores.

En este ejercicio, primero entrenamos el modelo, creando el mismo, alojandolo en el fichero: mnist_model.h5. En un caso, dependiendo el método de ejecución será guardado en Drive, o en nuestro propio ordenador. Luego cargaremos la imagen del número propuesto, que hemos fotografiado con el móvil, una vez dibujado a mano en color negro, sobre fondo blanco.

AQUÍ RESUMIMOS LOS PASOS NECESARIOS.
----------------------------------
Dibujar el número:
Preparar el papel o la superficie: Asegúrate de tener un fondo claro y limpio para que el número se destaque.

Dibuja el número: Utiliza un lápiz o bolígrafo para dibujar claramente el número en el papel. Trata de mantener el trazo claro y definido.

Contraste: Asegúrate de que haya suficiente contraste entre el número y el fondo para que el modelo pueda distinguirlo fácilmente.

Fotografiar el número:
Buena iluminación: Coloca la hoja con el número en un lugar bien iluminado. La iluminación uniforme puede ayudar a obtener una imagen de mejor calidad.

Ángulo y enfoque: Fotografía el número desde arriba para evitar distorsiones. Asegúrate de que la imagen esté enfocada y que el número sea claramente visible.

Fondo simple: Trata de tener un fondo simple y sin distracciones para que el modelo se centre en el número.

Preprocesamiento de la imagen:
Recortar y redimensionar: Recorta la imagen para que solo contenga el número y redimensiona la imagen según sea necesario.

Convertir a escala de grises: Convierte la imagen a escala de grises si es un número en blanco y negro, o a escala de colores si es en color.

Utilizar el número en un modelo de CNN:
Preparar los datos: Dependiendo del modelo y la biblioteca que estés utilizando (por ejemplo, TensorFlow y Keras), es posible que necesites ajustar el formato de la imagen o realizar otras transformaciones.

Entrenar el modelo: Entrena tu modelo de CNN utilizando el conjunto de datos que has creado con las imágenes de los números.

Prueba el modelo: Utiliza nuevas imágenes para probar la capacidad de tu modelo para reconocer los números.

Recuerda que la calidad de las imágenes y la cantidad de datos de entrenamiento son factores críticos para el éxito de tu modelo de CNN. Cuanto más variados y representativos sean los datos de entrenamiento, mejor será la capacidad del modelo para generalizar y reconocer números en situaciones diversas.

COMO EJECUTAR EL EJERCICIO.
---------------------------
Como hemos comentado al inicio, podemos utilizar dos métodos.

1-GOOGLE COLAB.
--------------
En este caso tendremos una cuenta abierta en Google Colab, y en Drive, con el fin de ejecutar online el ejercicio. Montando debidamente Drive.
Deberemos especificar correctamente las rutas tando de la carga de la imagen del número a predecir, como la descarga y alojamiento del fichero.
2-BAJO CONSOLA LINUX.
-------------------
En mi caso el ejercicio se utiliza Ubuntu 20.04.6 LTS, y el editor Sublime Text.

En este caso, también deberemos especificar correctamente las rutas tando de la carga de la imagen del número a predecir, como la descarga y alojamiento del fichero.
*************************************************************

Con el fin de que no haya conflictos con CUDA, hemos colocado esta linea de código en ambos ejercicios:
Para utilizar la CPU de tu ordenador, aunque en el caso de Google Colab, utilizamos su sistema online.

import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # Establece la variable de entorno para usar la CPU de tu ordenador, al no tener, en muchos casos una tarjeta NVIDEA.

---------------------------------------------------------
QUE ES CUDA:

CUDA es una plataforma de cómputo paralelo desarrollada por NVIDIA que permite utilizar la potencia de procesamiento de las unidades de procesamiento gráfico (GPU) para realizar cálculos de propósito general. La sigla CUDA proviene de "Compute Unified Device Architecture" (Arquitectura de Dispositivo Unificado para Cómputo, en español).

A continuación, te proporciono algunos puntos clave sobre CUDA:

Programación en paralelo: CUDA proporciona un entorno de programación en paralelo que permite a los desarrolladores aprovechar la capacidad de procesamiento masivo de las GPUs para realizar cálculos intensivos. Esto es especialmente útil para aplicaciones que pueden dividirse en tareas independientes que se pueden ejecutar simultáneamente.

Modelo de programación: CUDA utiliza un modelo de programación basado en el lenguaje de programación C, lo que facilita a los desarrolladores escribir código para ejecutar en las GPUs de NVIDIA.

Núcleos de procesamiento: Las GPUs de NVIDIA están compuestas por un gran número de núcleos de procesamiento, que pueden ejecutar tareas de forma paralela. CUDA permite a los desarrolladores escribir programas que distribuyen estas tareas en los núcleos de manera eficiente.

Aplicaciones comunes: CUDA se utiliza comúnmente en aplicaciones de alto rendimiento, como el procesamiento de imágenes y videos, simulaciones científicas, aprendizaje profundo (deep learning), criptografía y otros campos que requieren un procesamiento intensivo.

Bibliotecas y herramientas: NVIDIA proporciona bibliotecas y herramientas específicas de CUDA, como cuBLAS (para álgebra lineal básica), cuDNN (para redes neuronales profundas), y otras, que facilitan el desarrollo de aplicaciones de alto rendimiento.

Desarrollo de software: Para utilizar CUDA, los desarrolladores suelen escribir código en lenguaje CUDA C y utilizan herramientas proporcionadas por NVIDIA, como el compilador NVCC (NVIDIA CUDA Compiler).

En resumen, CUDA es una tecnología que permite aprovechar la potencia de las GPUs de NVIDIA para realizar cálculos paralelos, lo que resulta especialmente valioso en aplicaciones que requieren un alto rendimiento computacional.
Imágen de perfil

Binarizar imagen


Python

Publicado el 7 de Diciembre del 2023 por Hilario (121 códigos)
234 visualizaciones desde el 7 de Diciembre del 2023
En Python, el módulo pickle proporciona una forma de serializar y deserializar objetos. La serialización es el proceso de convertir un objeto en una secuencia de bytes, mientras que la deserialización es la reconstrucción del objeto a partir de esa secuencia de bytes. El propósito principal de pickle es facilitar el almacenamiento y recuperación de objetos complejos, como estructuras de datos, clases y otros objetos de Python.

El uso típico de pickle es para guardar objetos Python en archivos y luego recuperarlos más tarde. Sin embargo, debes tener precaución al usar pickle con datos no confiables o no seguros, ya que la deserialización de datos no confiables puede ser un riesgo de seguridad. No debes cargar archivos pickle de fuentes no confiables o desconocidas.

Alternativamente, si estás trabajando solo con datos simples y no necesitas interoperabilidad con otros lenguajes, podrías considerar otros formatos de serialización más seguros y eficientes, como JSON, que son humanamente legibles y no ejecutan código durante la deserialización.
Imágen de perfil

Descenso gradiente lineal múltiple


Python

Publicado el 9 de Octubre del 2023 por Hilario (121 códigos)
415 visualizaciones desde el 9 de Octubre del 2023
El descenso de gradiente en el contexto de la regresión lineal múltiple se refiere a un algoritmo de optimización utilizado para encontrar los valores óptimos de los coeficientes de una función de regresión lineal que se ajuste mejor a un conjunto de datos con múltiples características (variables independientes). El objetivo es minimizar una función de costo, generalmente el error cuadrático medio (MSE, por sus siglas en inglés), que mide la diferencia entre las predicciones del modelo y los valores reales.

A continuación, se explica cómo funciona el descenso de gradiente en el contexto de la regresión lineal múltiple:

Inicialización: Se inician los coeficientes del modelo con valores aleatorios o ceros.

Cálculo de las predicciones: Se utilizan los coeficientes actuales para hacer predicciones sobre el conjunto de datos de entrenamiento. Esto implica multiplicar cada característica de entrada por su correspondiente coeficiente y sumar todos estos productos para obtener una predicción.

Cálculo del error: Se calcula la diferencia entre las predicciones y los valores reales (etiquetas) del conjunto de entrenamiento. Esto da como resultado un vector de errores.

Cálculo del gradiente: Se calcula el gradiente de la función de costo con respecto a los coeficientes. El gradiente indica la dirección y la magnitud en la que los coeficientes deben actualizarse para minimizar la función de costo. Para el MSE, el gradiente se calcula como la derivada de la función de costo con respecto a cada coeficiente.

Actualización de coeficientes: Se actualizan los coeficientes multiplicándolos por una tasa de aprendizaje (learning rate) y restando el gradiente. Esta actualización mueve los coeficientes en la dirección que reduce el costo.

Iteración: Los pasos 2-5 se repiten iterativamente durante un número fijo de veces (épocas) o hasta que el costo converja a un valor mínimo.

Resultado final: Después de que el algoritmo haya convergido, los coeficientes resultantes se utilizan como los coeficientes óptimos para el modelo de regresión lineal múltiple.

El proceso se repite hasta que se alcance un criterio de convergencia o se haya realizado un número predeterminado de iteraciones. El descenso de gradiente es una técnica fundamental en el aprendizaje automático y la optimización, y se utiliza para ajustar los parámetros de los modelos de manera que se minimice la diferencia entre las predicciones y los valores reales.
Imágen de perfil

Red Neuronal-sklearn


Python

Publicado el 14 de Agosto del 2023 por Hilario (121 códigos)
328 visualizaciones desde el 14 de Agosto del 2023
--------------------------
A fronte praecipitium a tergo lupi.
---------------------------
Hilario Iglesias Martínez.
***************************
f(x,t)=(x**2/3)+t
Valores de predicción ([[8, 12]])
Valor de Salida prediccion:
(8**2/3)+12= 33,333333333
****************************
Realizado en plataforma Linux.
Ubuntu 20.04.6 LTS.
Editado con Google Colab.