Mostrar los tags: ia

Mostrando del 1 al 10 de 435 coincidencias
<<>>
Se ha buscado por el tag: ia
Imágen de perfil

Aplicación para ocultar información de texto en imágenes o fotografías (nueva versión).


Python

estrellaestrellaestrellaestrellaestrella(1)
Actualizado el 25 de Mayo del 2024 por Antonio (76 códigos) (Publicado el 26 de Marzo del 2021)
12.976 visualizaciones desde el 26 de Marzo del 2021
Aplicación para codificar y decodificar mensajes de texto en imágenes.

La imagen se selecciona mediante el botón "SEARCH".
En el modo "Encode" el texto a ocultar se introduce en el espacio superior. (el programa generará un nuevo archivo de imagen cuyo nombre tendrá el prefijo "encoded_" delante del título del archivo original.
En el modo "Decode" el texto oculto se muestra en el espacio superior.

PARA CUALQUIER DUDA U OBSERVACIÓN USEN LA SECCIÓN DE COMENTARIOS.
stgp

Repositorio en GitHub:
https://github.com/antonioam82/Steganography
Imágen de perfil

Cx_Contabilidad Financiera


Visual Basic

estrellaestrellaestrellaestrellaestrella(7)
Actualizado el 23 de Mayo del 2024 por Rafael (22 códigos) (Publicado el 21 de Diciembre del 2022)
23.362 visualizaciones desde el 21 de Diciembre del 2022
Cx es un programa para Windows.
Sirve para gestionar la contabilidad.
Produce: libro diario, auxiliar,
balanzas, recapitulación, estados financieros,
balance general, estado de pérdidas y ganancias,
estado de resultados y estados de cuentas.
Servosistema que administra
la oficina sin papeles.
Multiusuario cliente/servidor, red inalámbrica.
Código abierto. Trabajo a distancia.
Adjunto Cx Guía del rey de la creación

Sin-titulo
Imágen de perfil

Suavizado de imagen en archivos de vídeo por 'Filtrado bilateral', (aplicación en línea de comandos)


Python

estrellaestrellaestrellaestrellaestrella(2)
Actualizado el 23 de Mayo del 2024 por Antonio (76 códigos) (Publicado el 20 de Marzo del 2023)
6.952 visualizaciones desde el 20 de Marzo del 2023
Programa para realizar filtrado de imagen en archivos de vídeo (preferiblemente de corta duración) utilizando el algoritmo de 'filtrado bilateral' pudiendo especificar los valores sigma de espacio y color y el diámetro del vecindario para cada pixel. Los vídeos filtrados se generan, por defecto, conservando su sonido, aunque se pueden generar sin este introduciendo el argumento '-ae'/'--exclude_audio'.

ARGUMENTOS:
-src/--source: Nombre del vídeo original (OBLIGATORIO)
-dest/--destination: Nombre del video a generar ('NewFilteredVid.mp4' por defecto)
-sgc/--sigma_color: Valor sigma para espacio de color (75 por defecto)
-sgs/--sigma_space: Valor sigma espacial (75 por defecto)
-pd/--pixel_diameter: Diámetro de la vecindad de píxeles (9 por defecto)
-ae/--exclude_audio: Excluir audio y generar video sin sonido (OPCIONAL)

PARA CUALQUIER DUDA U OBSERVACIÓN UTILIZEN LA SECCIÓN DE COMENTARIOS
bvf
bvf2
bvf3
bvf4
Imágen de perfil

Generador de valores hash para contraseñas.


Python

Actualizado el 5 de Mayo del 2024 por Antonio (76 códigos) (Publicado el 20 de Noviembre del 2022)
1.953 visualizaciones desde el 20 de Noviembre del 2022
El siguiente programa genera valores hash para una contraseña, utilizando distintos algoritmos. También permite la copia de las salidas generadas.
ph
Imágen de perfil

Piano


Java

Actualizado el 17 de Abril del 2024 por Diego (6 códigos) (Publicado el 1 de Septiembre del 2020)
4.440 visualizaciones desde el 1 de Septiembre del 2020
fk
Imágen de perfil

Salidas entre Convolución CNN.


Python

Publicado el 21 de Febrero del 2024 por Hilario (128 códigos)
275 visualizaciones desde el 21 de Febrero del 2024
Figure_1
Figure_2
Figure_3
Figure_4
Figure_5
Figure_6
Figure_7
Figure_8
Figure_9

********************************************************************************************************************
Propongo el ejercicio: Aula_18_Feb_24.py, realizado en python. En el mismo trato de formular una red convolucional, lo más sencilla posible, con el fin ver el desarrollo de nueve capas convolucionales. Tratando de indagar y visualizar la salida después de cada capa utilizando un bucle. Por cada salto de bucle iremos viendo los valores correspondientes de la activación, al mismo tiempo que visualizaremos el resultado de la imagen, que será un tanto incongruente ya que sólo se trata de ver su funcionamiento.

A continuación describo las particularidades de este corto código:
*************************************************************************
Como se aprecia en las llamadas iniciales de importación de módulos, utiliza TensorFlow y Keras para crear un modelo de red neuronal convolucional (CNN) y visualiza las salidas de cada capa convolucional para una imagen de entrada aleatoria. Aquí está la descripción del código:

Importar bibliotecas:
------------------------------
numpy: Para trabajar con matrices y generar imágenes aleatorias.
matplotlib.pyplot: Para visualizar las salidas de cada capa convolucional.
tensorflow.keras.models.Sequential y tensorflow.keras.layers.Conv2D: Para construir la arquitectura del modelo CNN.

Crear el modelo:
---------------------
Se crea un modelo secuencial (Sequential) que representa la arquitectura de la red.

Agregar capas convolucionales:
------------------------------------------------
Se agregan varias capas convolucionales al modelo con diferentes números de filtros y funciones de activación ReLU.

Obtener las salidas de cada capa convolucional:
-----------------------------------------------------------------------
Se crea un modelo de visualización (visualization_model) que toma la entrada del modelo original y produce las salidas de cada capa convolucional.

Generar una imagen de entrada aleatoria:
-----------------------------------------------------------
Se crea una imagen de entrada ficticia con dimensiones (1, 600, 506, 3).
Si se quiere se podría hacer con carácter fijo en vez de aleatorio.

Obtener las activaciones de cada capa:
--------------------------------------------------------
Se obtienen las activaciones de cada capa convolucional para la imagen de entrada utilizando el modelo de visualización.

Visualizar las salidas de cada capa:
----------------------------------------------
Se itera sobre las activaciones y se muestra la salida de cada capa convolucional. Si la salida tiene cuatro dimensiones, se aplanan y visualizan las activaciones en escala de grises.
Como indiqué, este código es útil para entender cómo evoluciona la representación de la imagen a medida que pasa a través de las capas convolucionales de la red. Cada visualización muestra las activaciones de una capa particular, lo que puede ayudar a interpretar cómo la red extrae características en diferentes niveles de abstracción.

******************************************************************************************************************
Este código fue realizado bajo plataforma linux, con Ubuntu 20.04.6 LTS.
Fue editado con Sublime text.
Se deberá tener en cuenta que el sistema tendrá que tener cargado para las importaciones
los siguientes módulos:

import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Conv2D

La Versión de Python en mi ordenador es: Python 3.8.10.
****************************************************************************************
#Ejecución:python3 Aula_18_Feb_24.py
Imágen de perfil

Generador de contraseñas.


Python

estrellaestrellaestrellaestrellaestrella(3)
Actualizado el 30 de Enero del 2024 por Antonio (76 códigos) (Publicado el 2 de Agosto del 2021)
9.179 visualizaciones desde el 2 de Agosto del 2021
Programa para generar contraseñas de forma aleatoria, de hasta 50 caracteres. Cuenta con un campo "LENGTH" para especificar la longitud de la contraseña, un campo "MIN LOWERCASE" para especificar el número mínimo de caracteres en minúsculas, un campo "MIN UPPERCASE" para el número mínimo de caracteres en mayúsculas y un campo "MIN NUMBERS" para especificar el número mínimo de caracteres numéricos.
PARA CUALQUIER DUDA U OBSERVACIÓN USEN LA SECCIÓN DE COMENTARIOS.
pg
Imágen de perfil

Crear Módulo Transferencia Aprendizaje.


Python

Publicado el 16 de Enero del 2024 por Hilario (128 códigos)
235 visualizaciones desde el 16 de Enero del 2024
python3 Repaso_Aula_28.py
*************************


Ejercicio sencillo para Aula-28.
*******************************
Queremos generar un módulo para posteriores entrenamientos utilizando transferencia de aprendizaje.

A nuestro módulo lo llamaremos:MODULO-HIM.h5
Lo guardaré en esta ruta de mi ordenador: save_path = "/home/margarito/python/MODULO-HIM.h5"

Suponemos que en nuestro ordenador tenemos las imagenes de entrenamiento, que deberán guardar básicamente según este este esquema. En el caso de mi ordenador sería el siguiente:

/home/margarito/python/HIM/
|-- train/
| |-- dog/
| | |-- imagen1.jpg
| | |-- imagen2.jpg
| | |-- ...
| |
| |-- flores/
| | |-- imagen1.jpg
| | |-- imagen2.jpg
| | |-- ...
| |
| |-- ...
|
|-- test/
| |-- dog/
| | |-- imagen1.jpg
| | |-- imagen2.jpg
| | |-- ...
| |
| |-- flores/
| | |-- imagen1.jpg
| | |-- imagen2.jpg
| | |-- ...
| |
| |-- ...


Epoch.
*******
Epoch 1/10
2/2 [==============================] - 3s 615ms/step - loss: 0.6765 - accuracy: 0.5472
Epoch 2/10
2/2 [==============================] - 2s 875ms/step - loss: 0.6293 - accuracy: 0.5660
Epoch 3/10
2/2 [==============================] - 2s 566ms/step - loss: 0.5859 - accuracy: 0.6415
Epoch 4/10
2/2 [==============================] - 2s 880ms/step - loss: 0.5429 - accuracy: 0.8491
Epoch 5/10
2/2 [==============================] - 2s 571ms/step - loss: 0.5003 - accuracy: 0.8679
Epoch 6/10
2/2 [==============================] - 2s 564ms/step - loss: 0.4556 - accuracy: 0.8868
Epoch 7/10
2/2 [==============================] - 2s 889ms/step - loss: 0.4191 - accuracy: 0.8868
Epoch 8/10
2/2 [==============================] - 2s 864ms/step - loss: 0.3714 - accuracy: 0.8491
Epoch 9/10
2/2 [==============================] - 2s 884ms/step - loss: 0.3436 - accuracy: 0.9057
Epoch 10/10
2/2 [==============================] - 2s 869ms/step - loss: 0.3403 - accuracy: 0.9245



*************************************************************************************************************
El ejercicio es realizado en plataforma Linux.
Concretamente en:Ubuntu 20.04.6 LTS.
Fue editado con:Sublime text.
Ejecución bajo consola Linux:python3 Repaso_Aula_28.py

***************************************************************************************************************
Imágen de perfil

Transferencia de Estilo, redes CNN.


Python

Publicado el 9 de Enero del 2024 por Hilario (128 códigos)
340 visualizaciones desde el 9 de Enero del 2024
descarga-1
descarga-2

---------------------------------------------------------------------------------------------------------------------

Exponemos aquí un ejemplo de redes neuronales convolucionales CNN,
basadas en transferencia de estilo. Partiendo de una imagen original, y otra imagen que dará
la forma del estilo(en nuestro caso, un cuadro de Picaso), construiremos otra, basada en las dos anteriores.

El programa que citamos aquí está basado en en un ejemplo
del blog RUBENJROMO
https://rubenjromo.com/
Modificados algunos parámetros.
Editado y ejecutado en GoogleColab.
Archivos de muestra, alojados en DRIVE.
https://drive.google.com/

Modelo vgg19-dcbb9e9d.pth bajado de:
"https://download.pytorch.org/models/vgg19-dcbb9e9d.pth

*****************************************************************************

Las redes neuronales convolucionales (CNN) y la transferencia de estilo son conceptos distintos en el campo del aprendizaje profundo, pero a veces se combinan para lograr resultados interesantes en el procesamiento de imágenes. Aquí hay una breve descripción de cada uno:

Redes Neuronales Convolucionales (CNN):

Las CNN son un tipo de arquitectura de red neuronal diseñada específicamente para procesar datos de rejilla, como imágenes. Utilizan capas de convolución para extraer características relevantes de la imagen de entrada.
La convolución implica el uso de filtros o kernels que se deslizan sobre la imagen para realizar operaciones locales, lo que permite detectar patrones específicos, como bordes, texturas o formas.
Están compuestas por capas convolucionales, capas de activación (como la ReLU), capas de agrupación (pooling) y capas completamente conectadas.
Transferencia de Estilo:

La transferencia de estilo es una técnica que utiliza redes neuronales para combinar el contenido de una imagen con el estilo de otra imagen de manera creativa.
Se basa en la idea de separar el contenido y el estilo de una imagen. La información de contenido se extrae de una imagen de referencia, mientras que el estilo se toma de otra imagen.
La red neuronal intenta generar una nueva imagen que conserve el contenido de una imagen de entrada pero adopte el estilo de otra imagen de referencia.
Cuando se combinan estas dos ideas, se puede aplicar la transferencia de estilo utilizando una CNN. La idea es utilizar una red preentrenada, como VGG16 o VGG19, para extraer tanto el contenido como el estilo de las imágenes. Luego, se optimiza una nueva imagen para que coincida con el contenido de una imagen de entrada y el estilo de otra imagen de referencia. Este proceso permite crear imágenes que fusionan el contenido de una imagen con el estilo artístico de otra.

En resumen, las CNN son arquitecturas de redes neuronales diseñadas para el procesamiento de imágenes, mientras que la transferencia de estilo es una técnica que utiliza redes neuronales para combinar el contenido y el estilo de diferentes imágenes. Al aplicar la transferencia de estilo con una CNN, se pueden lograr resultados visualmente atractivos y creativos.
Imágen de perfil

Reproductor de música (nueva versión).


Python

Actualizado el 9 de Enero del 2024 por Antonio (76 códigos) (Publicado el 31 de Mayo del 2021)
8.845 visualizaciones desde el 31 de Mayo del 2021
Programa para reproducir archivos de audio que incorpora la posibilidad de crear una lista de favoritos.
El programa necesita de un archivo "json" que se generará al ejecutarse por primera vez.
Esta versión incorpora la posibilidad de reproducir secuencialmente la lista de favoritos, para ello se usará el botón "PLAY ALL" (dicha reproducción se podrá finalizar igualmente con el botón "STOP").
PARA CUALQUIER DUDA U OBSERVACIÓN USEN LA SECCIÓN DE COMENTARIOS.
mpr