CÓDIGO FUENTE

En esta sección hay publicado todo tipo de código fuente sobre programación e Internet que puedes descargar o copiar para aprender o utilizar en tus desarrollos, trabajos, ...

Esta página está abierta a tus aportaciones, por lo que quien esté interesado puede publicar cualquer tipo de código fuente desde: Agregar Código Fuente.

Códigos Fuente disponibles

Últimos 5 códigos introducidos

Imágen de perfil
Actualizado

Cx_Contabilidad Financiera


Visual Basic

estrellaestrellaestrellaestrellaestrella(7)
Actualizado el 23 de Mayo del 2024 por Rafael (22 códigos) (Publicado el 21 de Diciembre del 2022)
22.190 visualizaciones desde el 21 de Diciembre del 2022
Cx es un programa para Windows.
Sirve para gestionar la contabilidad.
Produce: libro diario, auxiliar,
balanzas, recapitulación, estados financieros,
balance general, estado de pérdidas y ganancias,
estado de resultados y estados de cuentas.
Servosistema que administra
la oficina sin papeles.
Multiusuario cliente/servidor, red inalámbrica.
Código abierto. Trabajo a distancia.
Adjunto Cx Guía del rey de la creación

Sin-titulo
Imágen de perfil
Actualizado

Suavizado de imagen en archivos de vídeo por 'Filtrado bilateral', (aplicación en línea de comandos)


Python

Actualizado el 23 de Mayo del 2024 por Antonio (76 códigos) (Publicado el 20 de Marzo del 2023)
6.810 visualizaciones desde el 20 de Marzo del 2023
Programa para realizar filtrado de imagen en archivos de vídeo (preferiblemente de corta duración) utilizando el algoritmo de 'filtrado bilateral' pudiendo especificar los valores sigma de espacio y color y el diámetro del vecindario para cada pixel. Los vídeos filtrados se generan, por defecto, conservando su sonido, aunque se pueden generar sin este introduciendo el argumento '-ae'/'--exclude_audio'.

ARGUMENTOS:
-src/--source: Nombre del vídeo original (OBLIGATORIO)
-dest/--destination: Nombre del video a generar ('NewFilteredVid.mp4' por defecto)
-sgc/--sigma_color: Valor sigma para espacio de color (75 por defecto)
-sgs/--sigma_space: Valor sigma espacial (75 por defecto)
-pd/--pixel_diameter: Diámetro de la vecindad de píxeles (9 por defecto)
-ae/--exclude_audio: Excluir audio y generar video sin sonido (OPCIONAL)

PARA CUALQUIER DUDA U OBSERVACIÓN UTILIZEN LA SECCIÓN DE COMENTARIOS
bvf
bvf2
bvf3
bvf4
Imágen de perfil

Recordatorio, descenso con momentum


Python

Publicado el 23 de Mayo del 2024 por Hilario (126 códigos)
54 visualizaciones desde el 23 de Mayo del 2024
Figure_1

***********************************************************************************************************************
Aula_28_repaso_descenso_momentum.py
+++++++++++++++++++++++++++++++++++
Dado que existen numerosas dudas sobre la aplicación de momentúm a un descenso de gradiente.
Vamos a explicar, lo más fácil posible, en que consiste, aunquue se miráis hacía atrás encontrareis
ejercicios en esta WEB, en la que se habla de este tema con ejercicios de ejemplo.

Sí suponéis una función ondulada, sobre dos ejes coordenados, en que el eje y tiene los valores de pérdida, y el eje x tiene los valores de parámetros o entradas. Esta función ondulada tendrá diversos, valores locales mínimos, y un valor, digamos, global mínimo.
Al aplicar un momentum, lo que hacemos es que en estos valles el descenso de gradiente no se relentice, hasta llegar global mínimo.

Bien, vamos a concretar en el siguiente resumen, las particulatidades del momentum.
Luego, plantearemos el sencillo ejercicio: Aula_28_repaso_descenso_momentum.py, para ver su funcionamiento real.

*****************************************************************************************************************

El descenso de gradiente con momentum (o SGD con momentum, por sus siglas en inglés) es una variación del algoritmo de descenso de gradiente estocástico (SGD) que se utiliza para entrenar redes neuronales y otros modelos de aprendizaje automático.

El objetivo del descenso de gradiente es encontrar los parámetros óptimos de un modelo que minimicen la función de error.
En el caso de las redes neuronales, la función de error representa la diferencia entre las predicciones del modelo y los datos reales.

El descenso de gradiente funciona iterativamente, ajustando los parámetros del modelo en la dirección del gradiente negativo de la función de error. Esto significa que los parámetros se mueven en la dirección hacía abajo que más reduce el error.
Sin embargo, el descenso de gradiente estándar puede ser sensible al ruido en los datos y puede quedar atrapado en mínimos locales, los valles de los que hablamos anteriormente.

Aquí es donde entra en juego el momentum. El momentum introduce una especie de "memoria" en el algoritmo, lo que le permite tener en cuenta los gradientes anteriores al actualizar los parámetros. Esto ayuda a suavizar las actualizaciones y a evitar
que el algoritmo se quede oscilando o se atasque en mínimos locales.

En términos matemáticos, el momentum se implementa mediante un término adicional en la ecuación de actualización de los parámetros.
Este término es proporcional al gradiente promedio de las iteraciones anteriores y ayuda a impulsar los parámetros en la misma dirección según los cálculos más favorables para un descenso que sea optimizado.

El uso del momentum tiene varias ventajas:

Aumenta la velocidad de convergencia: El momentum puede ayudar a que el algoritmo converja al mínimo global de la función de error más rápidamente.

Reduce las oscilaciones: El momentum ayuda a suavizar las actualizaciones de los parámetros, lo que puede reducir las oscilaciones en la trayectoria del aprendizaje.

Escapa de los mínimos locales: El momentum puede ayudar al algoritmo a escapar de los mínimos locales, que son puntos en los que la función de error es localmente mínima pero no globalmente mínima.

El momentum se controla mediante un hiperparámetro llamado coeficiente de momentum, que suele estar entre 0 y 1. Un valor más alto del coeficiente de momentum da más importancia a los gradientes anteriores y puede aumentar la velocidad de convergencia, pero también puede hacer que el algoritmo sea más sensible al ruido.

En general, el descenso de gradiente con momentum es una técnica poderosa para entrenar redes neuronales y otros modelos de aprendizaje automático.
Es más rápido y más robusto que el descenso de gradiente estándar, y puede ayudar a mejorar el rendimiento general del modelo.

********************************************************************************************************************
Como dijimos anteriormente proponemos ahora el ejercicio:
Aula_28_repaso_descenso_momentum.py, que pasamos a explicar:

1-Lo primero que hacemos es importar las librerías necesarias.

En nuestro caso: Se importan las librerías necesarias: numpy para cálculos numéricos y matplotlib.pyplot para graficar los resultados.

2-Definimos la Función de Pérdida y su Gradiente.

# Función de pérdida (En nuestro caso escogemos un ejemplo simple: f(x) = x^2)
def loss_function(x):
return x**2

# Gradiente o derivada de la función de pérdida
def gradient(x):
return 2*x

3- Ahora definimos los arámetros Iniciales.

x = np.random.randn() # Con el fin de no complicarnos la vida
utilizamos random en una inicialización aleatoria de los valores de x.
learning_rate = 0.1 Esto sería el ratio de aprendizaje.
momentum = 0.9 El coeficiente del momento
velocity = 0 Y lo inicializamos con un valor 0.

4- Almacenamiento de Pérdidas con el fin de poder realizar la gráfica.
losses = [ ]

5- Ahora lo que tenemos que hacer es el bucle de entrenamiento.

Iteraciones de entrenamiento con 200 iteraciones o ciclos.

for i in range(200):
grad = gradient(x)
velocity = momentum * velocity - learning_rate * grad
x += velocity
loss = loss_function(x)
losses.append(loss)
print(f"Iteración {i+1}, x: {x}, Loss: {loss}")

El bucle de entrenamiento se ejecuta durante 200 iteraciones. En cada iteración
Se calcula el gradiente de la función de pérdida en el punto actual
Se actualiza la velocidad usando la fórmula del momentum:
Se actualiza el valor de x, sumándole la velocidad: velocity x += velocity.
Se calcula la pérdida actual usando la función de pérdida.
Se almacena el valor de la pérdida en la lista losses.
Se imprime el número de iteración, el valor de x, conla pérdida correspondiente.


5-Con el fin de hacer más intuitivo el ejercicio graficamos las pérdidas.

plt.plot(losses)
plt.xlabel('Iteración')
plt.ylabel('Pérdida')
plt.title('Descenso de Gradiente con Momentum')
plt.show()

---------------------------------------------------------------------------
--------------------------------------------------------------------------
Para este ejercicio hemos utilizado una plataforma Linux, con Ubuntu 20.04.6 LTS.
Lo hemos editado con Sublite text.
La versión de python es la 3.
Se debe tener cargado para su importación en el sistema, estos módulos:
import numpy as np
import matplotlib.pyplot as plt
*****************************************************
Ejecución bajo consola linux:
python3 Aula_28_repaso_descenso_momentum.py

*****************************************************
Imágen de perfil

Diagnóstico de Vibraciones


Access

Publicado el 23 de Mayo del 2024 por Petergoff
46 visualizaciones desde el 23 de Mayo del 2024
El diagnóstico de vibraciones es una técnica fundamental en el mantenimiento predictivo y la gestión de activos industriales. A través de la monitorización y el análisis de vibraciones, es posible detectar fallos en los equipos antes de que se conviertan en problemas graves, lo que permite planificar las reparaciones y minimizar los tiempos de inactividad.
Importancia del Diagnóstico de Vibraciones

Prevención de Fallos: Al detectar anomalías en las vibraciones, se pueden identificar problemas como desalineaciones, desbalances, fallos en rodamientos y desgaste de componentes antes de que provoquen un fallo catastrófico.

Reducción de Costos: La identificación temprana de problemas evita reparaciones costosas y no planificadas, alargando la vida útil de los equipos y optimizando el uso de recursos.

Mejora de la Seguridad: Equipos que funcionan sin problemas son menos propensos a fallar de manera inesperada, lo que mejora la seguridad en el entorno de trabajo.

Optimización del Rendimiento: Un equipo bien mantenido y equilibrado opera de manera más eficiente, reduciendo el consumo de energía y mejorando la productividad.

Procedimientos del Diagnóstico de Vibraciones

El diagnóstico de vibraciones se realiza mediante varios pasos que aseguran la precisión y efectividad del análisis:

Monitorización de Vibraciones:
Se utilizan sensores de vibración, como acelerómetros, para recoger datos sobre las vibraciones en tiempo real. Estos sensores se instalan en puntos estratégicos de la maquinaria para capturar datos relevantes.

Registro de Datos:
Los datos de vibración se registran durante un período de tiempo para tener una visión completa del comportamiento del equipo. Esto puede incluir condiciones de operación normal y situaciones de carga máxima.

Análisis de Señales:
Los datos registrados se analizan utilizando software especializado que puede descomponer las señales de vibración en sus componentes de frecuencia. Esto ayuda a identificar patrones y anomalías.

Diagnóstico de Problemas:
Los patrones de vibración se comparan con modelos de fallos conocidos para diagnosticar problemas específicos. Por ejemplo, una frecuencia particular puede indicar un desequilibrio, mientras que otra puede señalar un problema en un rodamiento.

Acciones Correctivas:
Con base en el diagnóstico, se planifican y ejecutan las acciones correctivas necesarias. Esto puede incluir el reemplazo de componentes defectuosos, el reajuste de alineaciones o el equilibrado de ejes.

Tecnologías Utilizadas en el Diagnóstico de Vibraciones

El avance de la tecnología ha permitido desarrollar herramientas más precisas y eficaces para el diagnóstico de vibraciones:

Acelerómetros: Sensores que miden la aceleración de las vibraciones en diferentes partes de la maquinaria. Son esenciales para captar datos precisos y en tiempo real.
Análisis de Espectro: Software que transforma las señales de vibración en un espectro de frecuencias, facilitando la identificación de fallos específicos.
Monitorización Continua: Sistemas integrados que permiten la monitorización continua de las vibraciones, alertando automáticamente sobre cualquier anomalía detectada.
Técnicas de Inteligencia Artificial: Algoritmos avanzados que pueden aprender de los datos de vibración históricos y mejorar la precisión del diagnóstico prediciendo fallos futuros.

Aplicaciones del Diagnóstico de Vibraciones

El diagnóstico de vibraciones es aplicable en diversos sectores industriales:

Industria Automotriz: Para mantener el rendimiento óptimo de motores y transmisiones.
Aeronáutica: En la monitorización de turbinas y sistemas críticos para asegurar la seguridad y eficiencia.
Manufactura: En la gestión de maquinaria pesada y equipos de producción, donde el tiempo de inactividad puede ser extremadamente costoso.
Energía Eólica: Para el mantenimiento predictivo de turbinas eólicas, asegurando su operación continua y eficiente.

El diagnóstico de vibraciones es una herramienta indispensable en el mantenimiento industrial moderno. A través de la detección temprana de fallos, la reducción de costos y la mejora de la seguridad y eficiencia operativa, esta técnica asegura que los equipos funcionen de manera óptima. Con el uso de tecnologías avanzadas y procedimientos sistemáticos, el diagnóstico de vibraciones sigue siendo una piedra angular en la gestión efectiva de activos industriales.
Imágen de perfil

Red Neuronal sólo con Numpy.


Python

Publicado el 16 de Mayo del 2024 por Hilario (126 códigos)
209 visualizaciones desde el 16 de Mayo del 2024
Aula_28_Recordatorio_Mayo.py
************************************

Bien, dada una matriz, con 8 característica, y 20 muestras.
Como la siguiente:

[[1.234 0.567 2.345 1.890 0.123 3.456 2.345 1.234]
[0.987 1.234 1.890 0.345 2.567 0.890 1.234 2.345]
[3.456 1.890 0.567 2.345 1.234 0.890 2.567 1.890]
[2.567 1.890 0.123 1.234 2.345 0.567 1.890 3.456]
[0.890 1.890 2.345 0.567 1.234 3.456 0.890 1.234]
[1.890 2.345 1.234 0.567 2.345 0.123 1.234 0.567]
[1.234 2.345 0.567 1.890 0.123 2.567 0.890 1.234]
[2.345 1.890 3.456 0.890 1.234 0.567 1.890 2.567]
[0.567 1.234 1.890 0.567 1.234 0.890 2.345 0.123]
[0.890 1.890 0.123 1.234 0.567 3.456 1.234 1.890]
[1.890 0.567 1.234 0.890 2.567 1.234 2.345 0.567]
[1.234 2.567 0.890 1.890 0.123 1.890 0.567 1.234]
[0.567 1.234 2.345 1.890 0.567 2.345 1.234 0.890]
[1.890 0.123 1.234 0.567 2.345 1.890 0.567 1.234]
[0.890 1.234 0.567 1.890 1.234 2.345 3.456 0.890]
[1.234 0.567 2.345 0.890 2.345 1.234 0.567 1.890]
[2.567 1.890 0.890 1.234 0.567 1.890 2.345 0.123]
[0.567 2.345 1.234 0.567 1.890 0.123 1.890 0.567]
[1.234 1.890 0.567 3.456 2.567 1.234 0.890 1.234]
[0.567 2.345 1.234 0.890 1.890 0.567 1.234 2.567]]


Planteamos una red neuronal sin utilizar ni keras ni tensorflow. Que entrena la red con esos valores, de 8 características, y 20 muestras o ejemplos.
Y que haga una prediccion de salida de la caracteristica correspondientes, a esta muestra dada:[1.345 2.890 0.456 1.890 12.234 10.567 1.890 12.567].

El ejercicio, tendría básicamente estos pasos:

1-Definición de funciones de activación y pérdida:
*******************************************************
Se define la función de activación ReLU (relu) y su derivada (relu_derivative).
ReLU es una función de activación comúnmente utilizada en redes neuronales debido a su simplicidad y buen desempeño en muchas tareas.
Se define la función de pérdida de error cuadrático medio (mean_squared_error).
Esta función calcula la diferencia cuadrática media entre las predicciones y las etiquetas verdaderas.

2-Implementación de la red neuronal:
*****************************************
Se crea una clase NeuralNetwork que representa una red neuronal de dos capas (una capa oculta y una capa de salida).
En el método __init__, se inicializan los pesos y sesgos de la red neuronal de manera aleatoria.
En el método forward, se realiza la propagación hacia adelante, calculando las salidas de la red neuronal.
En el método backward, se realiza la retropropagación del error, calculando los gradientes de los pesos y sesgos y actualizándolos utilizando el algoritmo de descenso de gradiente.
El método train entrena la red neuronal utilizando los datos de entrada y las etiquetas verdaderas durante un número específico de épocas.
El método predict realiza predicciones utilizando la red neuronal entrenada.

3-Entrenamiento de la red neuronal:
********************************
Se definen los datos de entrada (X_train) y las etiquetas verdaderas (y_train).
Los datos se normalizan dividiéndolos por su máximo valor para asegurar que estén en el rango [0, 1].
Se crea una instancia de la red neuronal con el tamaño de entrada, tamaño oculto y tamaño de salida dados.
La red neuronal se entrena utilizando los datos de entrenamiento durante 10000 épocas con una tasa de aprendizaje de 0.01.

4-Predicción:
*****************
Se define un nuevo conjunto de datos de entrada (X_new) para realizar una predicción.
Los datos de entrada se normalizan de la misma manera que los datos de entrenamiento.
Se realiza una predicción utilizando la red neuronal entrenada.
El resultado de la predicción se desnormaliza multiplicándolo por el máximo valor de las etiquetas verdaderas.
Se muestra el resultado de la predicción.

Según vemos su desarrollo podemos decir, que este ejercicio muestra cómo implementar una red neuronal básica desde cero en Python sin utilizar bibliotecas como Keras o TensorFlow. La red neuronal se entrena utilizando el algoritmo de retropropagación y se prueba haciendo una predicción sobre nuevos datos de entrada.

El alumno podrá interactuar con el ejercicio, modificando parametros como
valores de entrada, caracteristicas y muestras, para su mejor comprensión.



UNA SALIDA DEL EJERCICIO, PODRÍA SER LA SIGUIENTE:
****************************************************************************
Epoch 0, Loss: 11.7756050562224
Epoch 1000, Loss: 0.012417106163412383
Epoch 2000, Loss: 0.004855440981664029
Epoch 3000, Loss: 0.002804630823301262
Epoch 4000, Loss: 0.0019105925868362645
Epoch 5000, Loss: 0.0013765944597636112
Epoch 6000, Loss: 0.0010168157428455883
Epoch 7000, Loss: 0.0007730551039343544
Epoch 8000, Loss: 0.0006225694864747496
Epoch 9000, Loss: 0.0005176777148262488
Predicción de salida: [[-0.55685326 -0.9034264 -1.02152184 0.87943007 0.40507882 1.91684935
0.28005875 2.23286946]]
[Finished in 701ms]

***********************************************************************
El ejercicio fue realizado bajo plataforma linux.
Ubuntu 20.04.6 LTS.
Editado con Sublime text.
Ejecución:
python3 Aula_28_Recordatorio_Mayo.py
***********************************************************************