Buscar un código

Mostrando del 11 al 17 de 17 coincidencias
<<>>
Se ha buscado por la cadena: cuenta atras
Imágen de perfil

Recordatorio, descenso con momentum


Python

Publicado el 23 de Mayo del 2024 por Hilario (128 códigos)
146 visualizaciones desde el 23 de Mayo del 2024
Figure_1

***********************************************************************************************************************
Aula_28_repaso_descenso_momentum.py
+++++++++++++++++++++++++++++++++++
Dado que existen numerosas dudas sobre la aplicación de momentúm a un descenso de gradiente.
Vamos a explicar, lo más fácil posible, en que consiste, aunquue se miráis hacía atrás encontrareis
ejercicios en esta WEB, en la que se habla de este tema con ejercicios de ejemplo.

Sí suponéis una función ondulada, sobre dos ejes coordenados, en que el eje y tiene los valores de pérdida, y el eje x tiene los valores de parámetros o entradas. Esta función ondulada tendrá diversos, valores locales mínimos, y un valor, digamos, global mínimo.
Al aplicar un momentum, lo que hacemos es que en estos valles el descenso de gradiente no se relentice, hasta llegar global mínimo.

Bien, vamos a concretar en el siguiente resumen, las particulatidades del momentum.
Luego, plantearemos el sencillo ejercicio: Aula_28_repaso_descenso_momentum.py, para ver su funcionamiento real.

*****************************************************************************************************************

El descenso de gradiente con momentum (o SGD con momentum, por sus siglas en inglés) es una variación del algoritmo de descenso de gradiente estocástico (SGD) que se utiliza para entrenar redes neuronales y otros modelos de aprendizaje automático.

El objetivo del descenso de gradiente es encontrar los parámetros óptimos de un modelo que minimicen la función de error.
En el caso de las redes neuronales, la función de error representa la diferencia entre las predicciones del modelo y los datos reales.

El descenso de gradiente funciona iterativamente, ajustando los parámetros del modelo en la dirección del gradiente negativo de la función de error. Esto significa que los parámetros se mueven en la dirección hacía abajo que más reduce el error.
Sin embargo, el descenso de gradiente estándar puede ser sensible al ruido en los datos y puede quedar atrapado en mínimos locales, los valles de los que hablamos anteriormente.

Aquí es donde entra en juego el momentum. El momentum introduce una especie de "memoria" en el algoritmo, lo que le permite tener en cuenta los gradientes anteriores al actualizar los parámetros. Esto ayuda a suavizar las actualizaciones y a evitar
que el algoritmo se quede oscilando o se atasque en mínimos locales.

En términos matemáticos, el momentum se implementa mediante un término adicional en la ecuación de actualización de los parámetros.
Este término es proporcional al gradiente promedio de las iteraciones anteriores y ayuda a impulsar los parámetros en la misma dirección según los cálculos más favorables para un descenso que sea optimizado.

El uso del momentum tiene varias ventajas:

Aumenta la velocidad de convergencia: El momentum puede ayudar a que el algoritmo converja al mínimo global de la función de error más rápidamente.

Reduce las oscilaciones: El momentum ayuda a suavizar las actualizaciones de los parámetros, lo que puede reducir las oscilaciones en la trayectoria del aprendizaje.

Escapa de los mínimos locales: El momentum puede ayudar al algoritmo a escapar de los mínimos locales, que son puntos en los que la función de error es localmente mínima pero no globalmente mínima.

El momentum se controla mediante un hiperparámetro llamado coeficiente de momentum, que suele estar entre 0 y 1. Un valor más alto del coeficiente de momentum da más importancia a los gradientes anteriores y puede aumentar la velocidad de convergencia, pero también puede hacer que el algoritmo sea más sensible al ruido.

En general, el descenso de gradiente con momentum es una técnica poderosa para entrenar redes neuronales y otros modelos de aprendizaje automático.
Es más rápido y más robusto que el descenso de gradiente estándar, y puede ayudar a mejorar el rendimiento general del modelo.

********************************************************************************************************************
Como dijimos anteriormente proponemos ahora el ejercicio:
Aula_28_repaso_descenso_momentum.py, que pasamos a explicar:

1-Lo primero que hacemos es importar las librerías necesarias.

En nuestro caso: Se importan las librerías necesarias: numpy para cálculos numéricos y matplotlib.pyplot para graficar los resultados.

2-Definimos la Función de Pérdida y su Gradiente.

# Función de pérdida (En nuestro caso escogemos un ejemplo simple: f(x) = x^2)
def loss_function(x):
return x**2

# Gradiente o derivada de la función de pérdida
def gradient(x):
return 2*x

3- Ahora definimos los arámetros Iniciales.

x = np.random.randn() # Con el fin de no complicarnos la vida
utilizamos random en una inicialización aleatoria de los valores de x.
learning_rate = 0.1 Esto sería el ratio de aprendizaje.
momentum = 0.9 El coeficiente del momento
velocity = 0 Y lo inicializamos con un valor 0.

4- Almacenamiento de Pérdidas con el fin de poder realizar la gráfica.
losses = [ ]

5- Ahora lo que tenemos que hacer es el bucle de entrenamiento.

Iteraciones de entrenamiento con 200 iteraciones o ciclos.

for i in range(200):
grad = gradient(x)
velocity = momentum * velocity - learning_rate * grad
x += velocity
loss = loss_function(x)
losses.append(loss)
print(f"Iteración {i+1}, x: {x}, Loss: {loss}")

El bucle de entrenamiento se ejecuta durante 200 iteraciones. En cada iteración
Se calcula el gradiente de la función de pérdida en el punto actual
Se actualiza la velocidad usando la fórmula del momentum:
Se actualiza el valor de x, sumándole la velocidad: velocity x += velocity.
Se calcula la pérdida actual usando la función de pérdida.
Se almacena el valor de la pérdida en la lista losses.
Se imprime el número de iteración, el valor de x, conla pérdida correspondiente.


5-Con el fin de hacer más intuitivo el ejercicio graficamos las pérdidas.

plt.plot(losses)
plt.xlabel('Iteración')
plt.ylabel('Pérdida')
plt.title('Descenso de Gradiente con Momentum')
plt.show()

---------------------------------------------------------------------------
--------------------------------------------------------------------------
Para este ejercicio hemos utilizado una plataforma Linux, con Ubuntu 20.04.6 LTS.
Lo hemos editado con Sublite text.
La versión de python es la 3.
Se debe tener cargado para su importación en el sistema, estos módulos:
import numpy as np
import matplotlib.pyplot as plt
*****************************************************
Ejecución bajo consola linux:
python3 Aula_28_repaso_descenso_momentum.py

*****************************************************
Imágen de perfil

CLASES EN PYTHON.


Python

Publicado el 2 de Agosto del 2023 por Hilario (128 códigos)
334 visualizaciones desde el 2 de Agosto del 2023
---------------------------------------------------------------------
In vino veritas

////////////////////////////////////////////////////////////////////
Hilario Iglesias Martínez.
////////////////////////////////////////////////////////////////////

Archivo de clase NeuralNetwork.py
********************************
Descripción:
***********
Este archivo contiene la implementación de la clase NeuralNetwork, que representa una red neuronal básica con una capa oculta y una capa de salida. La clase está diseñada para ser utilizada en problemas de clasificación binaria, donde se tienen características de entrada y se desea predecir una salida binaria. He adoptado la predicción binaria por ser la más usual para el ejemplo.

Dentro de NeuralNetwork.py, encontrarás las siguientes partes:

Importaciones:
El archivo puede comenzar con importaciones de bibliotecas necesarias, como NumPy, para realizar operaciones matemáticas en matrices.

Definición de funciones de activación:
Es probable que encuentres las definiciones de funciones de activación como ReLU, sigmoid, y sigmoid_derivative. Estas funciones son esenciales para realizar las operaciones en las capas oculta y de salida de la red neuronal.

Definición de la clase NeuralNetwork:
Dentro de la clase NeuralNetwork, encontrarás el constructor __init__, donde se definen los atributos de la red neuronal, como el tamaño de entrada, el tamaño de la capa oculta y el tamaño de salida. También se inicializan los pesos y sesgos aleatoriamente para la capa oculta y de salida.

Métodos de la clase:
En la clase, encontrarás métodos que son esenciales para el funcionamiento de la red neuronal, como forward para propagar hacia adelante, backward para propagar hacia atrás y actualizar los pesos, train para entrenar la red neuronal con datos de entrenamiento y predict para hacer predicciones con datos de entrada nuevos.

Datos de entrenamiento y prueba:
Es posible que encuentres una sección con datos de entrenamiento y prueba, que se utiliza para entrenar y probar la red neuronal. Con ellos podrás jugar con esta red neuronal modificando parámetros y viendo los resultados.

La clase NeuralNetwork proporcionada en NeuralNetwork.py debería estar bien implementada y lista para ser utilizada en otro script, como se muestra en tu archivo neuro.py.

************************************************************************************

Archivo: neuro.py
****************

Descripción:
El archivo neuro.py es el script principal que utiliza la clase NeuralNetwork definida en el archivo NeuralNetwork.py. En este archivo, se lleva a cabo la creación de una instancia de la red neuronal, se realiza el entrenamiento y se hace una predicción con la red entrenada.

Contenido:

Importaciones:
En el archivo neuro.py, probablemente encontrarás algunas importaciones de bibliotecas necesarias para que el código funcione correctamente. Por ejemplo, es posible que encuentres una importación de NumPy para trabajar con matrices y realizar operaciones matemáticas.

Datos de entrenamiento y prueba:
El archivo contendrá una sección donde se definen los datos de entrenamiento y prueba. En el ejemplo proporcionado, los datos de entrenamiento X y y son matrices NumPy que representan características de entrada y resultados esperados (etiquetas) para una tarea de clasificación binaria.

Creación de la instancia de la red neuronal:
En este archivo, se creará una instancia de la clase NeuralNetwork definida en NeuralNetwork.py. Esto se hace mediante la creación de un objeto de la clase con los tamaños de entrada, capa oculta y capa de salida adecuados.

Entrenamiento de la red neuronal:
Una vez creada la instancia de la red neuronal, se procede a entrenarla utilizando el método train. En el ejemplo proporcionado, se entrena la red durante 10000 épocas (iteraciones) con una tasa de aprendizaje de 0.01. Durante el entrenamiento, los pesos y sesgos de la red se ajustarán para reducir la pérdida y mejorar el rendimiento de la red en la tarea de clasificación.

Predicción con la red neuronal entrenada:
Después de entrenar la red, se realiza una predicción utilizando el método predict de la red neuronal con datos de entrada nuevos o de prueba. En el ejemplo proporcionado, se hace una predicción con un conjunto de datos de entrada input_data utilizando la red neuronal previamente entrenada.

Es importante tener en cuenta que el contenido específico del archivo neuro.py puede variar según el problema que se esté abordando y cómo se haya implementado la clase NeuralNetwork en el archivo NeuralNetwork.py. Sin embargo, la estructura general debería seguir siendo similar a lo que se describió anteriormente.

*******************************************************************************
Programa realizado en una plataforma linux, en concreto Ubuntu 20.04.6 LTS.
Se ha utilizado como editor, IDE: Sublime Text.
Realizado bajo Python 3.8.10

Se entiende que los archivos: neuro.py y la clase NeuralNetwork.py deben estar
bajo el mismo directorio.

EJECUCIÓN.
-----------------
Bajo consola linux.
mismo directorio.
python3 neuro.py

El resultado que debería dar es una Predicción semejante a esta:

Predicción: [[0.50623887]]





Imágen de perfil

Moverse por registros, con command button


Visual Basic.NET

Publicado el 10 de Abril del 2020 por Mauricio Antonio (7 códigos)
5.928 visualizaciones desde el 10 de Abril del 2020
Este es un Codigo como el nombre lo dice que permite moverse por los registros de una base de datos, utilizando botones de comando tipo move first, move previus, move next y move last, en el codigo que lo tome de un video y añadi algunas correcciones de errores que tenia el tutorial, como por ejemplo evitar la duplicacion de los datos, y asi poder limitar los movimientos del promer al ultimo registro, al codigo se le pueden hacer modificaciones segun la necesidad, por ejemplo si quieres que al llegar al final, el siguiente registro vuelva al inicio de la base de datos simplemente se cambia la condicional y se le coloca que index=0, si quieres que del comienzo vaya al ultimo registro con el boton anterior, de le agrega una condicional que cuando el indice este debajo de cero, sea igual al conteo de registro -1.
Imagen1
Imagen2

Como pueden ver en los labels que puse para mostrar el total de registros y el indice de cada registro, se daran cuenta que el indice es un numero menos que el registro, lo que justifica las formulas que se explican siempre que se trabaja con indices de los registros,.

Por ultimo me disculpan que pude un datagridview para mostrar los datos al lado de los registro pero al subir esto me dí cuenta que se me habia olvidado cargarlo y ya me dió pereza volver atras asi que lo deje asi.

Espero que alguien lo encuentre util y que lo ayude en algun proyecto quq desarrolle.
sin imagen de perfil

Navegador Web


Visual Basic

estrellaestrellaestrellaestrellaestrella(7)
Publicado el 26 de Agosto del 2006 por Jairo Arturo Segura Morales
28.343 visualizaciones desde el 26 de Agosto del 2006
El motivo de este comunicado es para dar a conocer la versión BETA de la segunda edición de Andrómeda Explorer, a diferencia de su antecesor cuenta con rutinas más completas y funcionales tales como:

1.- Permitir la Apertura de Nuevas ventanas del Navegador Andrómeda Explorer II.
2.- Abrir un documento o una Página Web Completa al igual que lo hace Internet Explorer.
3.- Opción de Guardar una Página Web al Igual que Internet Explorer
4.- Permite Configurar Página
5.- Opción de Imprimir la página Web
6.- Vista Preliminar
7.- Ver las Propiedades del documento HTML
8.- Trabajar sin conexión
9.- Cortar Selección
10.- Copiar Selección
11.- Pegar datos que se tengan en el portapapeles
12.- Seleccionar todo el documento Web
13.- Opción de Búsqueda en la Página actual
14.- Bloques de Navegación Atrás, Adelante, Página Principal, Detener, Actualizar.
15.- Opción de cambiar el tamaño del texto del Navegador
16.- Todas las ventanas Hijas se abren en el Mismo Andrómeda Explorer II
17.- Uso de Barras de Herramientas
18.- Uso de CoolBar para un mejor manejo
19.- Permite Visualizar la fecha y hora del sistema
20.- Barra de progreso Mejorada
21.- Visor de Progreso de Descarga
22.- Modulo de Favoritos (Inactivo por el momento)
23.- Modulo de Historial (Inactivo por el momento)

Ojalá que al donar y/o contribuir con estas aplicaciones ya sea completas o incompletas como es mi caso, ayuden a que la comunidad de programadores crezca.
Cualquier aportación o colaboración es bienvenida. espero sus comentarios.
Imágen de perfil

Codigo de la ruta mas corta, DIJKSTRA


Java

estrellaestrellaestrellaestrellaestrella(9)
Publicado el 20 de Junio del 2016 por Hugo L
56.315 visualizaciones desde el 20 de Junio del 2016
Este es el Dijkstra, lo hice basado en los ejercicios resueltos de forma analítica, lo pongo a disposición de ustedes para que lo revicen y en caso de ser necesario optimizarlo, espero que les sirva de algo, casi todas sus lineas están comentadas, cualquier error comentármelo y buscaremos la solución.
Anterior12Siguiente