Mostrar los tags: es

Mostrando del 1 al 10 de 730 coincidencias
<<>>
Se ha buscado por el tag: es
Imágen de perfil
Actualizado

Generador de gifs a partir de video (nueva version)


Python

Actualizado el 21 de Abril del 2024 por Antonio (75 códigos) (Publicado el 29 de Enero del 2024)
792 visualizaciones desde el 29 de Enero del 2024
Programa para generar gifs animados a partir de vídeos, que se ejecuta en la línea de comandos.
ARGUMENTOS:
-src/--source: Nombre del vídeo original (obligatorio).
-dest/--destination: Nombre del archivo a generar (opcional).
-sz/--size: Tamaño en porcentaje del gif respecto al vídeo original (opcional).
-shw/--show: Muestra resultado en ventana emergente al finalizar el proceso de generado (opcional).
-st/--start: Segundo inicial para gif (opcional).
-e/--end: Segundo final (opcional).
-spd/--speed: Velocidad relativa de la animación (opcional)

PARA CUALQUIER DUDA U OBSERVACIÓN, USEN LA SECCIÓN DE COMENTARIOS.

imagge
Imágen de perfil
Actualizado

Suavizado de imagen en archivos de vídeo por 'Filtrado bilateral', (aplicación en línea de comandos)


Python

Actualizado el 21 de Abril del 2024 por Antonio (75 códigos) (Publicado el 20 de Marzo del 2023)
6.180 visualizaciones desde el 20 de Marzo del 2023
Programa para realizar filtrado de imagen en archivos de vídeo (preferiblemente de corta duración) utilizando el algoritmo de 'filtrado bilateral' pudiendo especificar los valores sigma de espacio y color y el diámetro del vecindario para cada pixel. Los vídeos filtrados se generan, por defecto, conservando su sonido, aunque se pueden generar sin este introduciendo el argumento '-ae'/'--exclude_audio'.

ARGUMENTOS:
-src/--source: Nombre del vídeo original (OBLIGATORIO)
-dest/--destination: Nombre del video a generar ('NewFilteredVid.mp4' por defecto)
-sgc/--sigma_color: Valor sigma para espacio de color (75 por defecto)
-sgs/--sigma_space: Valor sigma espacial (75 por defecto)
-pd/--pixel_diameter: Diámetro de la vecindad de píxeles (9 por defecto)
-ae/--exclude_audio: Excluir audio y generar video sin sonido (OPCIONAL)

PARA CUALQUIER DUDA U OBSERVACIÓN UTILIZEN LA SECCIÓN DE COMENTARIOS
bvf
bvf2
bvf3
bvf4
Imágen de perfil

Generador de gifs a partir de video, en línea de comandos.


Python

estrellaestrellaestrellaestrellaestrella(4)
Actualizado el 3 de Abril del 2024 por Antonio (75 códigos) (Publicado el 9 de Diciembre del 2022)
8.191 visualizaciones desde el 9 de Diciembre del 2022
Programa para generar gifs animados a partir de vídeos, que se ejecuta en la línea de comandos.
ARGUMENTOS:
-src/--source: Nombre del vídeo original (obligatorio).
-dest/--destination: Nombre del archivo a generar (opcional).
-sz/--size: Tamaño en porcentaje del gif respecto al vídeo original (opcional).
-shw/--show: Muestra resultado en ventana emergente al finalizar el proceso de generado (opcional).
-st/--start: Segundo inicial para gif (opcional).
-e/--end: Segundo final (opcional).
-spd/--speed: Velocidad relativa de la animación (opcional)

PARA CUALQUIER DUDA U OBSERVACIÓN, USEN LA SECCIÓN DE COMENTARIOS.

mk
Imágen de perfil

Visor de gráficos financieros.


Python

estrellaestrellaestrellaestrellaestrella(2)
Actualizado el 1 de Abril del 2024 por Antonio (75 códigos) (Publicado el 7 de Julio del 2021)
9.191 visualizaciones desde el 7 de Julio del 2021
El programa muestra información relativa al precio máximo, mínimo, de apertura y cierre de un activo financiero (estos se irán almacenando en el archivo "symbols" que se generará al ejecutar el programa por primera vez) y para un periodo de tiempo. También muestra los gráficos relativos a las medias móviles exponenciales de 50 y 200 sesiones.
PARA CUALQUIER DUDA U OBSERVACIÓN USEN LA SECCIÓN DE COMENTARIOS.
gf
Imágen de perfil

Red neuronal CNN, detección de clases.


Python

Publicado el 24 de Marzo del 2024 por Hilario (122 códigos)
274 visualizaciones desde el 24 de Marzo del 2024
CLASES DE IMAGENES CON UNA MUESTRA DE CADA UNA.
-----------------------------------------------------------------------------------
Figure_1
Figure_2
Figure_3
Figure_4
Figure_5

***************************************************************
IMAGEN PROPUESTA A EVALUAR.
------------------------------------------------------------------------------

imagen

****************************************************************************************************************
TUTORIAL DEL EJERCICIO.
--------------------------------------
Este ejercicio que propongo hoy, está realizado con el fin de entender la dinámica, o forma de realizar una red neuronal CNN.

Está compuesto por tres códigos:

1- Aula_28_Descarga_Imagenes.py
-------------------------------
En este primer código accedemos a:
dataset_url = https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz"

De donde descargamos las imagenes necesarias para realizar el posterior modelo.
Las imagenes se guardaran, en nuestro usuario de Linux -Ubuntu-, en un fichero oculto (.Keras),
en un directorio llamado Datasets, en mi caso con la siguiente ruta: /home/margarito/.keras/datasets/flower_photos.
En el directorio:flower_photos, encontraremos las imagenes de las flores, con las clases a que corresponden.

Tres directorios con imágenes de estas clases:

-flower_photos
--daisy
--dandelion
--roses
--sunflowers
--tulips

Con el fin de utilizar estas imagenes de forma indirecta, copiaremos el directorio:-flower_photos
y lo pegaremos en nuestro directorio de usuario.
Al ejecutar este código, se muestra una imagen de cada clase.
---------------------------------------------------
Librerías necesarias a cargadas en vuestro sistema para la ejecución de este código:

import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
import tensorflow as tf

from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
import pathlib


*************************************************************************************************************
2-Aula_28_Entreno_Modelo.py
--------------------------
Con este código, lo que hacemos es entrenar el modelo, salvandolo una vez entrenado en nuestro usuario, en el directorio donde tengamos nuestros códigos.

Básicamente este código hace lo siguiente:

Este código en Python utiliza TensorFlow y Keras para construir y entrenar una red
neuronal convolucional (CNN) para clasificar imágenes de flores. Aquí está el desglose de lo que hace cada parte del código:

Importación de bibliotecas:
Importa TensorFlow y algunas clases específicas
de Keras necesarias para el procesamiento de imágenes.

Definición de directorios y ruta del modelo:
Establece las rutas de los directorios donde se encuentran
los datos de entrenamiento de imágenes de flores y donde se guardará el modelo entrenado.

Parámetros de entrenamiento:
Define los parámetros para el entrenamiento,
como el tamaño del lote, la altura y el ancho de las imágenes, y el número de épocas.

Generador de datos de entrenamiento:
Crea un generador de datos de imágenes de entrenamiento
utilizando la clase ImageDataGenerator de Keras.
Esta clase realiza aumento de datos, como escalamiento, recorte, volteo horizontal, etc.

Configuración de generadores de flujo de datos de entrenamiento
y validación:
Configura los generadores de flujo de datos
de entrenamiento y validación utilizando el directorio de datos
de entrenamiento y especificando la división para la validación.

Creación del modelo CNN:
Define el modelo de la CNN utilizando
Sequential de Keras, que es una pila lineal de capas.
El modelo consta de varias capas convolucionales y de agrupación (pooling),
seguidas de capas totalmente conectadas. La última capa utiliza una función
de activación softmax para la clasificación de las clases de flores.

Compilación del modelo:
Compila el modelo especificando el optimizador,
la función de pérdida y las métricas para el entrenamiento.

Entrenamiento del modelo:
Entrena el modelo utilizando los generadores de flujo de datos de entrenamiento y validación.

Guardado del modelo:
Guarda el modelo entrenado en la ruta especificada.

Mensaje de finalización:
Imprime un mensaje para indicar que el modelo ha sido entrenado y guardado correctamente.

Como podéis apreciar, en mi caso de linux, las rutas donde tengo los datos,
y el lugar donde gusrado el modelo, es el siguiente:
# Rutas de los directorios de datos
train_dir = '/home/margarito/python/flower_photos'
model_path = '/home/margarito/python/Mi_Modelo_Hilario.h5'
******************************************************************************************************************

Librerías necesarias a cargadas en vuestro sistema para la ejecución de este código:
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
-------------------------------------------------------------------------------------
3-Aula_28_Probar_Modelo.py
-------------------------
Con este código voy a probar el modelo.
En mi caso he sacado una fotografia, a una flor silvestre de diente de leon,
con el fin de evaluar el acierto de mi programa.
Este programa podría resumirse de la siguiente forma:

Este código realiza la inferencia de una imagen de flor utilizando un modelo de red neuronal convolucional (CNN) previamente entrenado. Aquí está el desglose de lo que hace cada parte del código:

Importación de bibliotecas:
Importa las bibliotecas necesarias, incluyendo NumPy para manipulación de matrices
y TensorFlow para el uso del modelo y la preprocesamiento de imágenes.

Cargar el modelo previamente entrenado:
Carga el modelo de CNN previamente entrenado desde la ruta especificada en modelo_ruta.

Ruta de la imagen de la flor:
Define la ruta de la imagen de la flor que se desea clasificar.

Cargar y redimensionar la imagen:
Carga la imagen de la flor desde la ruta especificada
y la redimensiona al tamaño requerido por el modelo, que es 224x224 píxeles.

Convertir la imagen a un array numpy:
Convierte la imagen cargada en un array numpy para que pueda ser procesada por el modelo.

Preprocesamiento de la imagen:
Realiza cualquier preprocesamiento necesario en la imagen, en este caso,
expandiendo las dimensiones del array para que coincida con el formato de entrada esperado por el modelo.

Normalización de los valores de píxeles:
Normaliza los valores de píxeles de la imagen para que estén en el rango de 0 a 1,
lo que es comúnmente necesario para la entrada de los modelos de redes neuronales.

Hacer la predicción:
Utiliza el modelo cargado para realizar la predicción en la imagen preprocesada.

Obtener la clase predicha:
Identifica la clase predicha asignando etiquetas de clases a las salidas del modelo
y seleccionando la clase con el valor de probabilidad más alto.

Imprimir la clase predicha:
Imprime la clase predicha de la flor en la imagen.

En resumen, este código toma una imagen de una flor,
la procesa adecuadamente para que pueda ser ingresada
al modelo, la clasifica utilizando el modelo
previamente entrenado y luego imprime la
clase predicha de la flor en la imagen.
------------------------------------------------------
Librerías necesarias a cargadas en vuestro sistema para la ejecución de este código:

import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing import image

*********************************************************************************
Estos ejercicios han sido realizados y ejecutados bajo consola linux.
Concretamente bajo Ubuntu 20.04.6 LTS.
Fueron editados con Sublime text.

Debereis de tener en cuenta que para la ejecución de los ejercicios
deberéis tener instaladas las librerías y módulos necesarios, segfún se indica en cada código.
----------------------------------------------

SALIDA, EN MI CASO DEL EJERCICIO DE LA IMAGEN PROPUESTA DE EVALUACIÓN:

2024-03-24 12:47:54.765845: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2024-03-24 12:47:54.797982: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2024-03-24 12:47:54.798348: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-03-24 12:47:55.329900: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT

1/1 [==============================] - ETA: 0s
1/1 [==============================] - 0s 114ms/step
La flor en la imagen es: dandelion
[Finished in 2.9s]
Imágen de perfil

Red-CNN Detección de bordes


Python

Publicado el 19 de Febrero del 2024 por Hilario (122 códigos)
225 visualizaciones desde el 19 de Febrero del 2024
Figure_1
Figure_2

Los kernels Sobel son filtros utilizados comúnmente en procesamiento de imágenes para realizar operaciones de convolución, especialmente en el contexto de detección de bordes. Estos filtros están diseñados para resaltar cambios rápidos en la intensidad de los píxeles en una imagen, lo que generalmente indica la presencia de bordes.

El operador Sobel consiste en dos kernels, uno para la detección de cambios horizontales y otro para cambios verticales. Estos kernels son matrices pequeñas que se aplican a la imagen mediante la operación de convolución. Los kernels Sobel comúnmente utilizados son los siguientes:

Kernel Sobel para detección de bordes horizontales (kernel_sobel_x):

[ -1, 0, 1]
[ -2, 0, 2]
[ -1, 0, 1]

Kernel Sobel para detección de bordes verticales (kernel_sobel_y):

[ 1, 2, 1]
[ 0, 0, 0]
[-1, -2, -1]

La operación de convolución implica deslizar estos kernels sobre la imagen original, multiplicando los valores de los píxeles en la región correspondiente del kernel y sumándolos para obtener un nuevo valor en la posición central. Este proceso se repite para cada píxel en la imagen, generando así dos nuevas imágenes filtradas: una resaltando cambios horizontales y otra resaltando cambios verticales.

La magnitud de los bordes se calcula combinando las respuestas horizontales y verticales mediante una fórmula de magnitud Euclidiana.

Este resultado proporciona una representación de la intensidad de los bordes en la imagen original, lo cual es útil para tareas como detección de contornos. En el código que compartiste anteriormente, estos kernels Sobel se utilizan para realizar la detección de bordes en la imagen cargada.


Este programa en Python: python3 Aula_28_bordes_CNN.py, realiza la detección de bordes en una imagen utilizando el operador Sobel. Aquí tienes una explicación paso a paso:

Cargar la imagen:
Utiliza la biblioteca OpenCV (cv2) para cargar una imagen desde la ruta "/home/margarito/python/tulipanes.jpeg".
Verifica si la carga de la imagen fue exitosa.

Convertir la imagen a formato RGB:
Utiliza la función cv2.cvtColor para convertir la imagen cargada (en formato BGR) a formato RGB.
Muestra la imagen original utilizando la biblioteca matplotlib.

Definir los kernels Sobel:
Define dos kernels Sobel, uno para la detección de bordes horizontales (kernel_sobel_x) y otro para la detección de bordes verticales (kernel_sobel_y).

Aplicar los filtros Sobel:
Utiliza la función cv2.filter2D para aplicar los filtros Sobel a la imagen original, obteniendo dos imágenes resultantes (imagen_bordes_x e imagen_bordes_y), que representan los bordes horizontales y verticales, respectivamente.

Calcular la magnitud de los bordes:
Calcula la magnitud de los bordes combinando las imágenes resultantes de los filtros Sobel mediante la fórmula de la magnitud Euclidiana.

Verificar si hay datos válidos en la matriz antes de normalizar:
Antes de normalizar la magnitud de los bordes, verifica si hay datos válidos en la matriz utilizando np.any.

Convertir a tipo de datos float32 antes de normalizar:
Convierte la matriz de magnitud de bordes a tipo de datos float32. Esto es necesario para evitar problemas de normalización con tipos de datos no compatibles.

Normalizar la imagen:
Utiliza el método de normalización para escalar los valores de la magnitud de los bordes al rango [0, 1]. Esto es importante para visualizar correctamente la imagen de bordes.

Mostrar la imagen con bordes:
Utiliza plt.imshow para mostrar la imagen resultante de la detección de bordes en escala de grises.
Muestra un título indicando que se ha aplicado el operador Sobel para la detección de bordes.

Manejar casos donde la matriz de magnitud de bordes está vacía:
Si la matriz de magnitud de bordes está vacía (todos los elementos son cero), imprime un mensaje indicando que la matriz está vacía o no contiene datos válidos.

En resumen, este programa carga una imagen, aplica el operador Sobel para detectar bordes y muestra la imagen resultante de la detección de bordes. Además, maneja casos donde la matriz de magnitud de bordes no contiene datos válidos.
Imágen de perfil

Programa para aplicación de filtros, en archivos de vídeo.


Python

estrellaestrellaestrellaestrellaestrella(4)
Actualizado el 20 de Noviembre del 2023 por Antonio (75 códigos) (Publicado el 24 de Mayo del 2021)
12.094 visualizaciones desde el 24 de Mayo del 2021
El presente programa se encarga de aplicar filtros sobre los fotogramas de un archivo de video empleando diferentes funciones. El programa realiza el filtrado frame a frame para a continuación generar un nuevo video con la secuencia de frames procesados (aplicando el frame rate del vídeo original). También usa el software "ffmpeg" para copiar el audio del vídeo original y añadirlo al vídeo resultante.

USO: Primeramente seleccionaremos el vídeo a filtrar mediante el botón "SEARCH". Una vez seleccionado iniciaremos el proceso con "START FILTERING" con el que empezaremos seleccionando la ubicación del nuevo vídeo, para a continuación iniciar el proceso (NOTA: La ruta del directorio de destino no deberá contener espacios en blanco). El proceso de filtrado podrá ser cancelado medinate el botón "CANCEL".
PARA CUALQUIER DUDA U OBSERVACIÓN USEN LA SECCIÓN DE COMENTARIOS.

vf
Imágen de perfil

ChessPDFBrowser


Java

estrellaestrellaestrellaestrellaestrella(2)
Actualizado el 14 de Noviembre del 2023 por Francisco Javier Rojas Garrido (24 códigos) (Publicado el 22 de Noviembre del 2017)
12.617 visualizaciones desde el 22 de Noviembre del 2017
chessPDF

Aplicación de ajedrez que permite trabajar con las partidas de los libros de ajedrez en PDF (siempre que los libros no sean escaneados y las partidas estén escritas en formato algebraico).

La nueva versión (v1.26), también permite extraer partidas en notación algebraica de figuras

También permite trabajar con listas de partidas leídas/escritas en formato PGN, y modificar los TAGs, NAGs y comentarios.

Los árboles de variantes pueden se modificados realizando movimientos con las piezas situadas en un tablero.

Permite trabajar con partidas incompletas (es decir, que empiecen en un movimiento posterior al inicial)

- Multi-idioma
- Multi-precisión
- Modo oscuro
- Conexión con motores tipo UCI
- OCR que convierte imágenes con una posición en un tablero, en una cadena estándar FEN

Compatible con el JDK-17

Vídeo de demostración de la nueva funcionalidad (v1.26)
(entrenamiento del reconocedor de figuras para la extracción de partidas en notación algebraica de figuras)

https://frojasg1.com:8443/resource_counter/resourceCounter?operation=countAndForward&url=https%3A%2F%2Ffrojasg1.com%2Fdemos%2Faplicaciones%2FChessPdfBrowser%2Fv1.26.ES.02.extraer.partidas.notacion.algebraica.de.figuras.mp4%3Forigin%3Dlawebdelprogramador&origin=web
Imágen de perfil

Clasificación_Datos_por_Regresión Logística


Python

Publicado el 30 de Octubre del 2023 por Hilario (122 códigos)
338 visualizaciones desde el 30 de Octubre del 2023
Presentamos para nuestra aula, un sencillo ejercicio propuesto, para clasificar una serie de datos sintéticos, utilizando el sistema de regresión logística.
El ejercicio, es el siguiente:
Ejercicio_Clas_Regre_Log-Aula-28.py

La clasificación de datos por regresión logística es una técnica de aprendizaje automático que se utiliza para predecir la pertenencia de un conjunto de datos a una o más clases. Aunque el nombre "regresión" logística incluye la palabra "regresión", este enfoque se utiliza para problemas de clasificación en lugar de regresión.

La regresión logística se emplea cuando se desea predecir la probabilidad de que una observación pertenezca a una categoría o clase específica, generalmente dentro de un conjunto discreto de clases. Por lo tanto, es una técnica de clasificación que se utiliza en problemas de clasificación binaria (dos clases) y clasificación multiclase (más de dos clases). Por ejemplo, se puede usar para predecir si un correo electrónico es spam (clase positiva) o no spam (clase negativa) o para clasificar imágenes en categorías como gatos, perros o pájaros.

La regresión logística utiliza una función logística (también conocida como sigmoide) para modelar la probabilidad de pertenecer a una clase particular en función de variables de entrada (características). La función sigmoide tiene la propiedad de que produce valores entre 0 y 1, lo que es adecuado para representar probabilidades. El modelo de regresión logística utiliza coeficientes (pesos) para ponderar las características y calcular la probabilidad de pertenencia a una clase.

Durante el entrenamiento, el modelo busca ajustar los coeficientes de manera que las probabilidades predichas se ajusten lo más cerca posible a las etiquetas reales de los datos de entrenamiento. Una vez que se ha entrenado el modelo, se puede utilizar para predecir la probabilidad de pertenencia a una clase para nuevos datos y tomar decisiones basadas en esas probabilidades, como establecer un umbral para la clasificación en una clase específica.
*************************************************************************************************************
Los pasos que realizamos en el ejercicio, son los siguientes:

1-Generamos datos sintéticos donde la clase se determina por la suma de las dos características.
2-Implementamos la regresión logística desde cero sin el uso de scikit-learn, incluyendo el cálculo de 3-gradientes y la actualización de pesos.
4-Dibujamos los datos de entrada en un gráfico, junto con la línea de decisión que separa las clases.


En resumen, la regresión logística es una técnica de clasificación que modela las probabilidades de pertenencia a clases utilizando la función sigmoide y es ampliamente utilizada en una variedad de aplicaciones de aprendizaje automático.