Mostrar los tags: ini

Mostrando del 1 al 10 de 29 coincidencias
<<>>
Se ha buscado por el tag: ini
Imágen de perfil

Evaluación con datos MINIST.


Python

Publicado el 10 de Marzo del 2024 por Hilario (121 códigos)
248 visualizaciones desde el 10 de Marzo del 2024
NÚMERO A PREDECIR.
--------------------------------
numero

*******************************************************************************************************************
Evaluamos como aprendizaje este ejercicio: Aula_18_Evaluar_CNN_Datos_Minist.py.
Este ejercicio propuesto está entrenado con datos MINIST.
Con el fin de que el Alunno, pueda apreciar la configuracion, y la estructura de datos,
guardamos el módulo entrenado en nuestro ordenador, en formato directorio, con el nombre :
MI-MODULO-MINIST


MNIST se refiere a un conjunto de datos muy utilizado
en el ámbito de la visión por computadora y el aprendizaje profundo.

El conjunto de datos MNIST consiste en imágenes de dígitos escritos
a mano, del 0 al 9. Cada imagen es en escala de grises y tiene un
tamaño de 28x28 píxeles. El conjunto está dividido en un conjunto
de entrenamiento y un conjunto de prueba, y se utiliza comúnmente
como punto de partida para probar algoritmos y modelos de aprendizaje
automático, especialmente en el contexto de reconocimiento de dígitos.

En nuestro código, estamos utilizando el conjunto de datos MNIST
proporcionado por TensorFlow para entrenar y evaluar tu red neuronal
convolucional (CNN) en el reconocimiento de estos dígitos manuscritos.

Como podemos apreciar, la evaluación del ejercicio, no es del todo positiva.
El alumno puede modificarlo para intentar ajustarlo.

*********************************************************************

El ejercicio propuesto podríamos describirlo, por pasos de la siguiente
forma:

Importaciones de Bibliotecas:
********************************

Se importa TensorFlow, una biblioteca popular para aprendizaje profundo y otras tareas de machine learning.
Se importan clases y funciones específicas de TensorFlow, como Dense, Flatten, Conv2D, Model, y otras necesarias para construir y entrenar modelos de redes neuronales.
Carga de Datos MNIST:

Utiliza TensorFlow para cargar el conjunto de datos MNIST, que consiste en imágenes de dígitos escritos a mano y sus respectivas etiquetas de clase (números del 0 al 9).
Normaliza las imágenes dividiendo los valores de píxeles por 255.0.

Preparación de Datos:
************************
Añade una dimensión extra a las imágenes para representar los canales de color (en este caso, escala de grises).
Crea conjuntos de datos (train_ds y test_ds) usando TensorFlow Dataset API para facilitar el manejo y la alimentación de datos durante el entrenamiento y prueba.

Definimos el Modelo:
***********************
Define una clase MyModel que hereda de la clase Model. Esta clase representa el modelo de la red neuronal convolucional (CNN) que se construirá.
En el constructor (__init__), se definen capas de convolución, aplanado (flatten), y capas densas.
En el método call, se define la secuencia de operaciones para la propagación hacia adelante.

Configuración de Entrenamiento:
************************************
Define funciones de pérdida, optimizador y métricas para la fase de entrenamiento.
Define funciones train_step y test_step utilizando decoradores de TensorFlow (@tf.function) para ejecutar estas funciones de manera eficiente en modo gráfico.

Bucle de Entrenamiento:
***************************
Itera a través de un número de épocas predefinido (EPOCHS).
En cada época, realiza un bucle de entrenamiento y otro de prueba.
Muestra métricas como pérdida y precisión durante el entrenamiento y la prueba.

Guardamos del Modelo:
*******************
Guarda el modelo entrenado en un directorio especificado.

Carga de Imagen para Predicción:
*******************************
Intenta cargar una imagen (numero.jpg) para realizar una predicción utilizando el modelo entrenado.
Se produce un error debido a que el archivo no se encuentra en la ubicación especificada.

Impresión de Resultados:
*****************************
Imprime el número predicho y el porcentaje de precisión para la clase predicha.

****************************************************************************
SALIDA POR CONSOLA, SIN ACIERTO.

****************************************************************************
SALIDA POR CONSOLA, SIN ACIERTO.

TensorFlow version: 2.13.1
Por favor, ESPERA A REALIZAR LAS 10 EPOCHS
Epoch 1, Loss: 0.13401952385902405, Accuracy: 95.94000244140625, Test Loss: 0.06022726744413376, Test Accuracy: 98.1500015258789
Epoch 2, Loss: 0.04087728634476662, Accuracy: 98.68333435058594, Test Loss: 0.055624209344387054, Test Accuracy: 98.18999481201172
Epoch 3, Loss: 0.02175530232489109, Accuracy: 99.288330078125, Test Loss: 0.05986746773123741, Test Accuracy: 98.12999725341797
Epoch 4, Loss: 0.013109182007610798, Accuracy: 99.57167053222656, Test Loss: 0.05405193939805031, Test Accuracy: 98.32999420166016
Epoch 5, Loss: 0.008494390174746513, Accuracy: 99.70832824707031, Test Loss: 0.06368830800056458, Test Accuracy: 98.44999694824219
Epoch 6, Loss: 0.008195172995328903, Accuracy: 99.7249984741211, Test Loss: 0.07445775717496872, Test Accuracy: 98.33999633789062
Epoch 7, Loss: 0.005741223692893982, Accuracy: 99.8066635131836, Test Loss: 0.07288998365402222, Test Accuracy: 98.38999938964844
Epoch 8, Loss: 0.003435570513829589, Accuracy: 99.8933334350586, Test Loss: 0.08180861920118332, Test Accuracy: 98.32999420166016
Epoch 9, Loss: 0.0059661963023245335, Accuracy: 99.80500030517578, Test Loss: 0.0844760537147522, Test Accuracy: 98.25999450683594
Epoch 10, Loss: 0.002849259879440069, Accuracy: 99.90166473388672, Test Loss: 0.08755964040756226, Test Accuracy: 98.3499984741211
Salvamos MI-MODULO-MINIST
1/1 [==============================] - 0s 49ms/step
Número predicho: 3 <-------------------En esta predicción hemos tenido éxito.
Porcentaje de precisión: 39.92%

************************************************************
-------------------------------------------------------------------
Este ejercicio ha sido realizado bajo una plataforma Linux.
Ubuntu 20.04.6 LTS.
Editado con Sublime text.

El alumno, deberá tener cargadas las librerias necesarias en el sistema.
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
import numpy as np

------------------------------------------------------------
Ejecución bajo consola Linux.
python3 Aula_18_Evaluar_CNN_Datos_Minist.py
Imágen de perfil

MiniBatch-Datos-Aleatorios


Python

Publicado el 20 de Septiembre del 2023 por Hilario (121 códigos)
385 visualizaciones desde el 20 de Septiembre del 2023
MiniBatch_Aula-228-G.py


El ejercicio se configura y ejecuta con parámetros mínimos con el fin de
que las salidas impresas por consola no sean grandes. Se puede jugar con estos
valores:
np.random.seed(0)
X = 2 * np.random.rand(20, 1)
y = 4 + 3 * X + np.random.randn(20, 1)
learning_rate = 0.1
batch_size = 10
epochs = 10


***************************************************************************************************************
El descenso de gradiente Mini-Batch es una técnica de optimización ampliamente utilizada en el aprendizaje automático y la optimización numérica. Permite entrenar modelos de manera eficiente al actualizar los pesos del modelo en función de un subconjunto (mini-lote o mini-batch) de datos de entrenamiento en lugar de utilizar el conjunto de datos completo en cada iteración. Además, en algunos casos, se introducen elementos de aleatoriedad en la selección de estos mini-lotes para mejorar la convergencia y evitar que el algoritmo quede atrapado en mínimos locales.

Aquí hay un resumen de cómo funciona el descenso de gradiente Mini-Batch con entrada de datos aleatorios:

División del conjunto de datos: En lugar de usar todo el conjunto de datos de entrenamiento en cada iteración (como se hace en el descenso de gradiente por lotes), el conjunto de datos se divide en mini-lotes más pequeños. La elección del tamaño del mini-lote es un hiperparámetro importante que debe ajustarse según las características de los datos y el modelo.

Aleatorización de los datos: Para introducir aleatoriedad, el conjunto de datos se suele barajar (mezclar) al comienzo de cada época (una época se completa después de que el modelo haya visto todos los mini-lotes). Esto evita que el modelo se ajuste a patrones específicos del orden en que se presentan los datos y mejora la generalización.

Iteración: El algoritmo recorre las épocas, y en cada época, se selecciona un mini-lote aleatorio de datos. Los pesos del modelo se actualizan en función del gradiente calculado utilizando solo los ejemplos en ese mini-lote. La actualización de los pesos se realiza de acuerdo con la dirección del gradiente descendente, como en el descenso de gradiente estándar.

Convergencia: El proceso se repite durante varias épocas hasta que el algoritmo alcance un criterio de convergencia predefinido (por ejemplo, una pérdida baja o un número máximo de épocas).

La aleatorización de los mini-lotes y la aleatorización de los datos en cada época ayudan a evitar que el descenso de gradiente Mini-Batch quede atrapado en mínimos locales y mejora la capacidad del algoritmo para generalizar a nuevos datos. También hace que el entrenamiento sea más eficiente en términos de tiempo y memoria en comparación con el descenso de gradiente por lotes.

El descenso de gradiente Mini-Batch es especialmente útil cuando se trabaja con grandes conjuntos de datos que no caben en la memoria, ya que permite entrenar modelos de manera más rápida y escalable utilizando recursos computacionales limitados.
Imágen de perfil

Mini Batch. Descenso de gradiente.


Python

Publicado el 19 de Septiembre del 2023 por Hilario (121 códigos)
514 visualizaciones desde el 19 de Septiembre del 2023
Descenso de gradiente Mini Batch.
********************************
MiniBatch-Aula_228-B.py

******************************************************************************************
El descenso de gradiente mini batch, también conocido como Mini Batch Gradient Descent, es una variante del algoritmo de optimización del descenso de gradiente utilizado en el aprendizaje automático y la optimización de modelos de redes neuronales. A diferencia del descenso de gradiente estocástico (SGD) y el descenso de gradiente por lotes (Batch Gradient Descent), el descenso de gradiente mini batch combina características de ambos enfoques.

En el descenso de gradiente mini batch, los datos de entrenamiento se dividen en lotes más pequeños, cada uno de los cuales se utiliza para calcular una actualización parcial de los pesos del modelo. Estos lotes más pequeños se llaman "mini lotes". La idea detrás de esta técnica es encontrar un equilibrio entre la eficiencia de la actualización de parámetros y la variabilidad de las actualizaciones en comparación con el SGD y el Batch Gradient Descent.

Aquí hay una descripción paso a paso del proceso del descenso de gradiente mini batch:

División de los datos: Los datos de entrenamiento se dividen en mini lotes de tamaño fijo. El tamaño del mini lote es un hiperparámetro que se puede ajustar según las necesidades del problema. Por lo general, los tamaños de mini lotes varían desde 16 hasta 256 ejemplos, pero esto puede variar según el conjunto de datos y la arquitectura de la red.

Inicialización de pesos: Se inicializan los pesos del modelo de manera aleatoria o utilizando algún método de inicialización específico.

Cálculo del gradiente: Para cada mini lote, se calcula el gradiente de la función de pérdida con respecto a los pesos del modelo utilizando solo los ejemplos en ese mini lote. Esto se hace utilizando retropropagación (backpropagation).

Actualización de pesos: Los pesos del modelo se actualizan utilizando el gradiente calculado. La fórmula de actualización es similar a la del descenso de gradiente estocástico, pero en lugar de utilizar un solo ejemplo, se promedian los gradientes de todos los ejemplos en el mini lote. Esto suaviza las actualizaciones y reduce la variabilidad en comparación con el SGD.

Iteración: Se repiten los pasos 3 y 4 para cada mini lote. Este proceso se repite a lo largo de múltiples épocas hasta que se alcance un criterio de parada, como un número máximo de épocas o una convergencia satisfactoria.

Ventajas del descenso de gradiente mini batch:

Mayor eficiencia computacional en comparación con el Batch Gradient Descent, ya que se aprovecha el paralelismo en las operaciones matriciales.
Menor variabilidad en las actualizaciones de peso en comparación con el SGD, lo que puede llevar a una convergencia más rápida y estable.
El descenso de gradiente mini batch es una elección común para entrenar modelos de redes neuronales en la práctica, ya que combina las ventajas de SGD y Batch Gradient Descent. El tamaño del mini lote es un hiperparámetro crítico que debe ajustarse según el problema y la memoria disponible.
Imágen de perfil

# minicom: Mini Intérprete de comandos #


Python

Publicado el 6 de Octubre del 2022 por Octulio (35 códigos)
666 visualizaciones desde el 6 de Octubre del 2022
minicom: Mini Intérprete de comandos.
Programa escrito en lenguaje Python, versión 3.x.
Llamar de la siguiente manera:
1
2
='editor_indent'>./minicom.py
Es compatible en Linux, Windows y en Cygwin.
Imágen de perfil

Guardar los valores introducidos en un array y devolver, media, máximo, mínimo, par, impar, ...


JavaScript

estrellaestrellaestrellaestrellaestrella(2)
Actualizado el 11 de Marzo del 2021 por Joel (150 códigos) (Publicado el 12 de Marzo del 2020)
4.602 visualizaciones desde el 12 de Marzo del 2020
Código de ejemplo que muestra como va obteniendo los valores recibidos por el usuario y los va guardando en un arrays, y ir mostrando los elementos pares, impares, la suma de los elementos pares y impares, suma total de todos los valores, valor máximo y valor mínimo.

calculos-con-numeros
Imágen de perfil

Crear un array de números aleatorios y determinar el mayor y menor de ellos


C sharp

estrellaestrellaestrellaestrellaestrella(2)
Publicado el 3 de Marzo del 2021 por Joan (121 códigos)
3.758 visualizaciones desde el 3 de Marzo del 2021
Código que crea un array de 10 números comprendidos entre el 1 y el 99, y busca cuales valores son los mayores y menores.
Imágen de perfil

Calcular el mínimo común múltiple de dos numeros


Java

estrellaestrellaestrellaestrellaestrella(1)
Publicado el 16 de Enero del 2021 por Katas (25 códigos)
2.831 visualizaciones desde el 16 de Enero del 2021
Código que muestra como calcular el mínimo común divisor de dos números utilizando un bucle while.

El mínimo común múltiplo de dos o más números naturales es el menor múltiplo común de todos ellos (o el ínfimo del conjunto de los múltiplos comunes)
sin imagen de perfil

Obtener el máximo y mínimo de un array de enteros


Pascal/Turbo Pascal

Publicado el 12 de Septiembre del 2020 por Jan
1.371 visualizaciones desde el 12 de Septiembre del 2020
Mediante un bucle que va recorriendo el array de enteros, guardara en una variable el valor máximo y mínimo.
Imágen de perfil

Mínimo Común Múltiplo en Java


Java

Publicado el 27 de Mayo del 2020 por Hdb Programming (46 códigos)
4.281 visualizaciones desde el 27 de Mayo del 2020
Programa en Java que solicita dos números y halla el mínimo común múltiplo de ellos.
Imágen de perfil

MINI CRUD C#


C sharp

Actualizado el 5 de Marzo del 2020 por Gian Carlos (5 códigos) (Publicado el 23 de Diciembre del 2019)
4.943 visualizaciones desde el 23 de Diciembre del 2019
VISUAL STUDIO
SQL SERVER
C#
Programación N Capas
Anterior123Siguiente